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Lecture 1

1. A user’s guide to reductive groups

Let F be a field. An algebraic group over F is a group object in the category of algebraic varieties
over F . More concretely, it is an algebraic variety G over F together with:

• a “multiplication” map G×G→ G,
• an “inversion” map G→ G,
• an “identity”, a distinguished point of G(F ).

These are required to satisfy the obvious analogues of the usual group axioms. Then G(A) is a group,
for any F -algebra A. It’s clear that we can define a morphism of algebraic groups over F in an obvious
way, giving us a category of algebraic groups over F .

Some important examples of algebraic groups include:

• The additive and multiplicative groups (usually written Ga and Gm),
• Elliptic curves (with the group law given by the usual chord-and-tangent process),
• The group GLn of n×n invertible matrices, and the subgroups of symplectic matrices, orthogonal

matrices, etc.

We say an algebraic group G over F is linear if it is isomorphic to a closed subgroup of GLn for some
n. In particular, every linear algebraic group is an affine variety, so elliptic curves are not linear groups.
One can show that the converse is true: every affine algebraic group is linear. In this course we’ll be
talking exclusively about linear groups.

Exercise. Show that PGL2, the quotient of GL2 by the subgroup of diagonal matrices, is a linear
algebraic group, without using the above theorem.

We’re mostly interested in algebraic groups satisfying a certain technical condition. Let Unip(n) be
the group of upper-triangular matrices with 1’s on the diagonal (unipotent matrices). We say G is
reductive if there is no connected normal subgroup H /G which is isomorphic to a subgroup of Unip(n)
for any n.

This is a horrible definition; one can make it a bit more natural by developing some general structure
theory of linear algebraic groups, but we sadly don’t really have time. I’ll just mention that reductive
groups have many nice properties non-reductive groups don’t; if G is reductive (and the base field F
has characteristic 0), the category of representations1 of G is semisimple (every representation is a direct
sum of irreducibles). For non-reductive groups this can fail. For instance Unip(2), which is just another
name for the additive group Ga, has its usual 2-dimensional representation, and this representation has
a trivial 1-dimensional sub with no invariant complement.

For instance, the group GLn is reductive for any n, as are the symplectic and orthogonal groups.
If F is algebraically closed (and let’s say of characteristic 0, just to be on the safe side), then there
is a classification of reductive groups over F using linear algebra widgets called root data. One finds
that they are all built up from products of copies of GL1 (“tori”) and other building blocks called
“simple” algebraic groups. The simple algebraic groups are: four infinite families An, Bn, Cn, Dn; and
five exceptional simple groups E6, E7, E8, F4, G2.

Date: CoMoF Summer School, Heidelberg, 2011.
1Here “representation” is in the sense of algebraic groups: just a morphism of algebraic groups from G to GLn for some

n.
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Over non-algebraically-closed fields F , life is much more difficult, since we can have pairs of groups
G,H which are both defined over F , with G not isomorphic to H over F , but G ∼= H over some finite
extension of F . For instance, let F = R, and consider the “circle group”

C = {(x, y) ∈ A2 : x2 + y2 = 1}, (x, y) · (x′, y′) = (xx− yy′, xy′ + yx′).

One can show that C becomes isomorphic to Gm over C, although these two groups are clearly not
isomorphic over R.

Exercise. Check this.

If G and H are groups over F which become isomorphic after extending to some extension E/F ,
then we say H is an E/F -form of G. One can show that if E/F is Galois, the E/F -forms of G are
parametrised by the cohomology group H1(E/F,Aut(GE)), where Aut(GE) is the (abstract) group of
algebraic group automorphisms of G over E. To return to our circle group example for a moment, if
G = Gm then Aut(GE) = ±1 for any E, and H1(C/R,±1) has order 2, so the only C/R-forms of G
are the circle group C and Gm itself.

If G is connected and reductive, then there’s a unique “best” form of G, the split form, which is
characterised by the property that it contains a subgroup isomorphic to a product of copies of Gm (a
split torus) of the largest possible dimension. So the group C above is not split, and its split form is Gm.

For more details on linear algebraic groups, consult a book. There are several excellent references
for the theory over an algebraically closed field, such as the books of Humphreys [Hum75] and Springer
[Spr98]. For the theory over a non-algebraically-closed field, the book by Platonov and Rapinchuk [PR94]
is a good reference; this is also useful reading for some of the later sections of this course.

2. Algebraic groups over number fields

Let’s consider a linear algebraic group over a number field F .
In fact, it’ll suffice for everything we do here to consider an algebraic group over Q. That’s because

there’s a functor called “restriction of scalars” (sometimes “Weil restriction”) from algebraic groups over
F to algebraic groups over Q; if G is an algebraic group over F , there is a unique algebraic group H
over Q with the property that for any Q-algebra A we have

H(A) = G(F ⊗Q A).

This group H is the restriction of scalars of G, and we call it ResF/Q(G). See Paul Gunnells’ lectures at
this summer school for an explicit description of this functor and lots of examples. If G is reductive, so
is ResF/Q(G), so we can forget about the original group over F and just work with this new group over
Q.

So let G be a linear algebraic group over Q, which (for simplicity) we’ll suppose is connected. Then
we can consider the groups G(Qv) for each place v of Q. These are topological groups, since the field
Qv has a topology.

If v is a finite prime p, then G(Qp) “looks like the p-adics”; it’s totally disconnected. In particular, it
has many open compact subgroups, and these form a basis of neighbourhoods of the identity. (This is
obvious for GLn – the subgroups of matrices in GLn(Zp) congruent to the identity mod pm, for m ≥ 1,
work – and hence follows for any linear algebraic group.) In the other direction, one can show that
G(Qp) has maximal compact subgroups if and only if G is reductive; compare the additive group Ga,
whose Qp-points clearly admit arbitrarily large open compact subgroups. There is a beautiful theory due
to Bruhat and Tits which describes the maximal compact subgroups of G(Qp), for connected reductive
groups G over Qp, in terms of a geometric object called a building, but we won’t go into that here.

One thing that’ll be useful to us later is this: if we fix a choice of embedding of G into GLn, and let
Kp = G(Zp) = G(Qp) ∩ GLn(Zp), then for all but finitely many primes p, Kp is a maximal compact
subgroup. In fact we can do better than this; for all but finitely many p, Kp is hyperspecial, a technical
condition from Bruhat–Tits theory, which will crop up again later when we talk about Hecke algebras.
For instance, GLn(Zp) is a hyperspecial maximal compact subgroup of GLn(Qp) for all p.

Exercise. Find an embedding ι : GL2 ↪→ GLn of algebraic groups over Qp, for some n, such that
ι−1(GLn(Zp)) is a proper subgroup of GL2(Zp).
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Lecture 2

For the real points of a reductive group, the story is a bit different. If G is Zariski connected, then
it needn’t be the case that G(R) is connected (for instance Gm), but G(R) will have finitely many
connected components. Hence it can’t have open compact subgroups unless it’s compact itself.

It turns out that the maximal compact subgroups can be very nicely described in terms of Lie group
theory (more specifically, in terms of the action of complex conjugation on the Lie algebra of G(C)).
In particular, they’re all conjugate, so in most applications it doesn’t matter very much which one you
work with.

For example, in SL(2,R) the maximal compact subgroups are conjugates of the group

SO(2,R) =

{(
x y
−y x

)
: x2 + y2 = 1

}
.

Exercise (important!). Check that the group SO(2,R) is the stabiliser of i, for the usual left action of
SL(2,R) on the upper half-plane h; the action of SL(2,R) on h is transitive; and the resulting bijection

h ∼= SL(2,R)/SO(2,R)

is a diffeomorphism.

In general, if K ⊆ G(R) is maximal compact, the quotient G(R)/K is a very interesting manifold,
called a symmetric space. As the above exercise shows, these are the appropriate generalisations of
the upper half-plane h, so they will come up all over the theory of automorphic forms. Many of these
symmetric spaces have names, such as “hyperbolic 3-space” or the “Siegel upper half-space”.

Now let’s consider all primes simultaneously. Let A be the ring of adeles of Q, and consider the group
G(A). This inherits a topology2 from the topology of A. Since A is a restricted direct product of the
completions of Q, we have a corresponding decomposition

G(A) =
∏′

v

G(Qv),

where the dash means to take elements whose component at v lies in G(Zp) for all but finitely many3

primes p.

We’ll also need to consider the finite adeles Af =
∏′

v<∞
Qv, and the corresponding group

G(Af ) =
∏′

v<∞
G(Qv)

of Af -points of G. Note that G(Q) sits inside G(A), via the diagonal embedding Q ↪→ A. We will also
sometimes consider G(Q) as a subgroup of G(Af ), by neglecting the component at ∞; hopefully it will
always be clear which we are using!

The first key result about these groups is the following:

Theorem (Harish-Chandra, Borel). The group G(Q) is discrete in G(A); and if G has no quotient
isomorphic to Gm, then the quotient G(Q)\G(A) has finite Haar measure.

The quotient space G(Q)\G(A) is immensely important for us, as it is the home of automorphic
forms.

3. Automorphic forms

Let G be a connected reductive group over Q, as above. Let K∞ ⊆ G(R) be a maximal compact
subgroup, and V a finite-dimensional irreducible complex representation of K∞.

2One has to be a little careful in defining this topology. One can equip GLn(A) with the subspace topology that

comes from regarding it as an open subset of Matn×n(A), where Matn×n(A) ∼= An has the product topology; but this is
not the right topology, as inversion is not continuous (exercise!). Much better is to regard GLn(A) as a closed subset of

Matn×n(A)×A ∼= An+1, given by {(m,x) : det(m)x = 1}. We then get a topology on G(A) for every linear group G by
embedding it in GLn for some n.

3Note that to define G(Zp) we need to choose an embedding into GLn, as above; but changing our choice of embedding

will only affect finitely many primes, so it introduces no ambiguity in the restricted product.
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Definition. An automorphic form for G of weight V is a function

φ : G(Q)\G(A)→ V

such that:

(1) φ(gk) = φ(x) for all g ∈ G(A) and k ∈ Kf , where Kf is some open compact subgroup of G(Af );
(2) φ(gk∞) = k−1

∞ ◦ f(g) for all g ∈ G(A) and k ∈ K∞;
(3) various conditions of smoothness and boundedness hold.

If φ satisfies (1) for some specific open compact subgroup Kf , we say φ is an automorphic form of
level Kf .

I won’t explain exactly what kind of smoothness and boundedness conditions are involved here; for a
precise statement, see the books of Bump or of Gelbart.

Let’s now see how this relates to more familiar things, like modular curves. For an open compact
subgroup Kf ⊂ G(A) as above, we write

Y (Kf ) = G(Q)\G(A)/KfK∞.

This might look like a horrible mess, but it’s actually not so bad. A general theorem (again due to Borel
and Harish-Chandra) shows that the double quotient

Cl(Kf ) = G(Q)\G(Af )/Kf ,

which we call the class set of Kf , is finite. Moreover, from the discreteness of G(Q) in G(A) it follows
that any µ ∈ G(Af ), the group

Γµ = G(Q) ∩ µKfµ
−1

is discrete in G(R). Unravelling the definitions, we find that if µ1, . . . , µr is a set of representatives for
Cl(Kf ), we have

Y (Kf ) =

r⊔
i=1

Γµ\Y∞

where Y∞ is the symmetric space G(R)/K∞. Automorphic forms show up as sections of various vector
bundles on these spaces, with the line bundle encoding the representation V of K∞.

If G is SL2, the space Y∞ is the upper half-plane, as we saw above; so each of the pieces Γµ\Y∞ is
just the quotient of the upper half-plane by a discrete subgroup of SL2(R) – in other words, a modular
curve!

Exercise. To get some idea of the power of the theorems of Borel and Harish-Chandra, let’s use them
to prove the two most important basic results of algebraic number theory.

(1) Show that if G = ResF/Q Gm where F is a number field, and Kf is
∏
v-∞O

×
K,v, the class set

Cl(Kf ) is just the ideal class group of the field F .
(2) Describe the groups Γµ in the above case, and the space Y∞. How is this related to Dirichlet’s

units theorem?

In general, working with automorphic forms involves lots of hard analysis with functions on the
symmetric spaces Y∞, and it’s not at all clear how one might hope to explicitly compute these objects.
But there’s a special case where everything becomes very easy:

Definition. We say G is definite if the group G(R) is compact.

If G is definite, then the only possible maximal compact subgroup K∞ ⊆ G(R) is G(R) itself; so the
quotient Y∞ is just a point, and the quotients Y (Kf ) are just the finite sets Cl(Kf ). As was apparently
first noticed by Gross in his beautiful paper “Algebraic modular forms” ([Gro99]), automorphic forms
on these groups are in many ways much simpler than in the non-definite case, and yet are still very
interesting objects.

4. Algebraic automorphic forms (after Gross)

Let’s take a definite connected reductive group G/Q. Since any automorphic form for G of weight V
must transform in a specified way under K∞, which is the whole of G(R), it is uniquely determined by
its restriction to G(Af ), and we can precisely describe what this restriction must look like:
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Definition (Gross). An algebraic automorphic form for G of level Kf and weight V is a function

φ : G(Af )→ V

such that

(1) φ(gk) = φ(g) for all g ∈ G(Af ) and k ∈ Kf ;
(2) φ(γg) = γ ◦ φ(g) for all g ∈ G(Af ) and γ ∈ G(Q).

We write Alg(Kf , V ) for the space of algebraic automorphic forms of level Kf and weight V .

Exercise. Show that if φ : G(Q)\G(A) → V is any function satisfying conditions (1) and (2) in the
definition of an automorphic form from the previous section, then φ|G(Af ) is an algebraic automorphic
form (of the same weight and level).

It’s clear that any φ ∈ Alg(Kf , V ) is uniquely determined by its values on any set µ1, . . . , µr of
representatives of the class set Cl(Kf ) = G(Q)\G(Af )/Kf . In particular, the space Alg(Kf , V ) is
finite-dimensional.

We can actually do a little better than this. Recall that for µ ∈ G(Af ) we defined groups

Γµ = G(Q) ∩ µKfµ
−1.

Notice that in the definite case these groups are finite (since they are discrete subgroups of the compact
group G(R)). If g ∈ Γµ, then we have

g ◦ φ(µ) = φ(gµ) (as g ∈ G(Q))

= φ(µ · µ−1gµ)

= φ(µ) (as µ−1gµ ∈ Kf .)

So f(µ) ∈ V Γµ . Hence if µ1, . . . , µr are a set of representatives for Cl(Kf ), as above, we have a map

Alg(Kf , V ) -
r⊕
i=1

V Γµi ,

φ - (f(µ1), . . . , f(µr)).

This is clearly well-defined, and injective (since φ is determined by its values on the µi). In fact it is
also surjective, and thus an isomorphism.

Exercise. Prove carefully that the above map is surjective.

Caveat. There’s a possible risk of confusion in the terminology here, in that various authors (notably
[BG11]) have proposed a variety of definitions of what it should mean for an automorphic form, or an
automorphic representation, on a general non-definite reductive group to be “algebraic”. For instance, a
lot of important research has been done recently on “RAESDC” (regular algebraic essentially self-dual
cuspidal) automorphic representations of GLn. These are very different, and much more complicated,
objects than our algebraic automorphic forms (which are the “algebraic modular forms” of [Gro99]).

Lecture 3

Last time, we saw how to define spaces Alg(Kf , V ) of algebraic automorphic forms for a definite
reductive group. As with classical modular forms, spaces alone are not terribly interesting, but they
come with a natural family of operators – Hecke operators – and the deep number-theoretical importance
of automorphic forms is encoded in the action of these operators.

Let’s run through some general formalism. The Hecke algebra H(G(Af ),Kf ) is the free Z-module
with basis the set of double cosets {KgK : g ∈ G(Af )}, equipped with an algebra structure which I
won’t define. Two properties we’ll need of this space are:

• If Kf =
∏
pKp for open compact subgroups Kp ⊆ G(Qp), then H(G(Af ),Kf ) decomposes as a

restricted tensor product of local Hecke algebras,

H(G(Af ),Kf ) =
⊗′

p

H(G(Qp),Kp).
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• If Kp is hyperspecial – which, as we saw in lecture 1, is the case for all but finitely many p – the
algebra H(G(Qp),Kp) is commutative and is generated by an explicit finite set of elements lying
in a maximal torus.

For example, the local Hecke algebra H (GLn(Qp),GLn(Zp)) is isomorphic to Z[T1, . . . , Tn, T
−1
n ],

where Ti is the double coset of a diagonal matrix with i diagonal entries equal to p and the remaining
(n− i) equal to 1.

Exercise. Prove this, by Googling the phrase “Smith normal form”.

It’s a general fact that if Π is a representation of G(Af ), the Kf -invariants ΠKf pick up an action of
H(G(Af ),Kf ). To see how these Hecke operators act on the space Alg(Kf , V ), note that any KgK can

be written as a finite union of left cosets
⊔t
s=1 gsK. We then define, for φ ∈ Alg(Kf , V ),

([KgK] · φ)(x) =

t∑
s=1

φ(xgs).

Exercise. Show that [KgK] · φ is in Alg(Kf , V ).

We’ll need to make this operator [KgK] on Alg(Kf , V ) a little more explicit, using our isomorphism
from last time

Alg(Kf , V ) -
r⊕
i=1

V Γµi

φ - (f(µ1), . . . , f(µr)),

where µ1, . . . , µr ∈ G(Af ) are a set of representatives for Cl(Kf ). To find

([KgK] · φ)(µi) =

t∑
s=1

φ(µigs),

we need to find out in which double cosets the products µigs lie. Indeed, if γ ∈ G(Q) is such that
µigs ∈ γµjK, then we have

φ(µigs) = φ(γµj) = γ · f(µj).

There won’t be very many possibilities for γ. The possibilities are the elements of the set

G(Q) ∩ µigsKµ−1
j ,

and any two elements of this set differ by right multiplication by an element of the group Γµj , which we
already know is finite.

So for each pair (i, s) we need to find the unique j such that µigsKµ
−1
j ∩ G(Q) is non-empty. If we

consider all s at once, we can present this in the following way:

• For each (i, j) ∈ {1, . . . , r}2, let Aij(g) = G(Q) ∩ µiKgKµ−1
j , a finite set.

• Let Bij(g) = Aij(g)/Γµj (which is well-defined, as Aij(g) is preserved by right multiplication by
Γµj ).

• Then for any φ ∈ Alg(K,V ), we have

([KgK] · φ)(µi) =
∑

[γ]∈Bij(g)

γ · f(µj).

Much of the work in computing with algebraic automorphic forms goes into finding the sets Bij(g),
for various g in the Hecke algebra. Once you know the data of: a set of representatives µ1, . . . , µr; the
corresponding groups Γµ1

, . . . ,Γµr ; and the sets Bij(g) for all i, j and your favourite g, it’s essentially
routine to calculate a basis of Alg(K,V ) and the matrix of [KgK] acting on this basis for absolutely any
V . That is, the hard part of the computation is independent of the weight, which is perhaps surprising
if you’re used to computing with modular forms and modular symbols.

Terminological remark. The matrix whose i, j entry is bij = #Bij is called the Brandt matrix of g,
and it gives the action of KgK on the automorphic forms of level Kf and weight the trivial representation
(sometimes called the Brandt module of level Kf ). The term “Brandt matrix” goes back to the very first
case in which algebraic automorphic forms were studied, for G the group of units of a definite quaternion
algebra over Q; here Cl(Kf ) is in bijection with the left ideal classes in D.
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5. Examples of this idea in the literature

As far as I know, the examples of definite (or definite-modulo-centre) groups G where people have
computed algebraic automorphic forms are:

• D×, where D is a definite quaternion algebra over Q: [Piz80]
• ResF/Q(D×), where F is a totally real number field and D a totally definite quaternion algebra

over F : [Dem05, Dem07, DD08]
• Unitary groups: [Loe08], Dembele (unpublished), Greenberg–Voight (unpublished)
• Compact forms of the symplectic group Sp4 and the exceptional Lie group G2: [LP02]
• Compact forms of Sp2n, n ≥ 2: [CD09]

Over the remaining two lectures, I’m going to explain one specific example, the case of definite unitary
groups.

6. Hermitian spaces and unitary groups

Let F be a number field, and E/F a quadratic extension. For x ∈ E, we write x̄ for the image of x
under the nontrivial element of Gal(E/F ).

Definition. A Hermitian space for E/F is a finite-dimensional E-vector space V with a pairing 〈 , 〉 :
V × V → E which is linear in the first variable and skew-symmetric, in the sense that

〈y, x〉 = 〈x, y〉.

If V is a Hermitian space, then there is an associated algebraic group U over F whose F -points are
given by

U(F ) = {u ∈ AutE(V ) : 〈ux, uy〉 = 〈x, y〉 ∀x, y ∈ V } .
This group becomes isomorphic to GLd over E, where d = dimE V . In particular, it’s connected and

reductive.

Exercise. Prove this. (You should find that there are two possible isomorphisms, related by the inverse
transpose map GLd → GLd.)

We say that V is totally positive definite if F is totally real, and 〈x, x〉 is totally positive for all x ∈ V .
(Note that 〈x, x〉 is in F , so this makes sense.) Note that this in particular implies that λλ̄ is totally
positive for all λ ∈ E, so E/F must be a CM extension (a totally imaginary quadratic extension of a
totally real field).

Fact. If V is totally positive definite, then the group G = ResF/Q(U) is a definite reductive group.

We’ll also need (occasionally) to consider some integral structures on these objects. A lattice in V is
an OE-lattice L ⊂ V (a finitely-generated OE-module containing an E-basis of V ). Any choice of such
a lattice L defines an integral structure on G, for which G(Z) is the stabilizer of L.

Theorem. If V is totally positive definite, L ⊂ V is a lattice, and r ∈ OF , then the set

{x ∈ L : 〈x, x〉 = r}

is finite and can be algorithmically computed.

Proof. By choosing a basis for L as a Z-module, and equipping it with the quadratic form q(x) =
TrF/Q〈x, x〉, this reduces to the problem of enumerating all short vectors for a quadratic form, which
can be solved using the LLL (Lenstra-Lenstra-Lovasz) reduction method. �

Lecture 4

Recall from last time that we can enumerate vectors of a given length in a lattice in a positive definite
Hermitian space. From this, we have the following corollary:

Theorem. For any lattice L as above, and any r ∈ OF , the set

(†) {ϕ ∈ EndE(V ) : ϕ(L) ⊆ L, 〈ϕx, ϕy〉 = r · 〈x, y〉 ∀x, y}

is finite and algorithmically computable.
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Proof. There are clearly only finitely many possibilities for where ϕ can send each vector in a set of
generators4 of L. �

For example, if V is the “standard” rank d Hermitian space, by which I mean E⊕d with the Hermitian
form

〈(x1, . . . , xd), (y1, . . . , yd)〉 =

d∑
i=1

xiȳi,

and L is the obvious sublattice O⊕dE , then this set is simply the set of all matrices whose columns (or
rows) are orthogonal vectors in V with entries in OE and length r. So one can enumerate them pretty
quickly by simply listing all vectors of length r, and then looking for d-tuples that are orthogonal.

How does this help? Let’s define

L̂ =
∏
p

(L ⊗Z Zp) .

This is contained in V ⊗Q Af , which has an action of G(Af ), and one easily checks that the stabilizer

of L̂ is an open compact subgroup KL. (More concretely, KL =
∏
pKp where Kp is the stabilizer of

L ⊗Z Zp in V ⊗Q Qp.)
Let K ⊆ G(Af ) be an open compact subgroup contained in KL, for some choice of lattice L.
We want to find the following data for K:

(1) a set of representatives µ1, . . . , µr for Cl(K);
(2) the finite groups Γµi ;

(3) the sets Aij(g) = G(Q) ∩ µiKgKµ−1
j , for each pair (i, j) and various g ∈ G(Af ).

Note that (2) is in fact a special case of (3), by taking g = 1 and j = i.
Let’s assume that we know the solution to (1). Then we can solve (3) as follows: we choose

λ ∈ OE such that λµiL̂ ⊆ L̂;

λ′ ∈ OE such that λ′gL̂ ⊆ L̂;

λ′′ ∈ OE such that λ′′µ−1
j L̂ ⊆ L̂.

It’s clear that we can always do this: we just need to make the λ’s divisible by sufficiently high powers
of a certain finite set of primes. Then if γ ∈ Aij(g), the element γ̃ = λ · λ′ · λ′′ · γ ∈ EndE(V ) lies in the
set (†), where r = NE/F (λλ′λ′′). Not every element of (†) comes from an element of Aij(g), of course,
but for each element of (†) it is a finite, purely local computation to check whether it gives us an element
of Aij(g), and we know that we must get every element of Aij(g) this way.

So how do we solve problem (1), of finding the class set? We can do this using a “bootstrap”
technique. We know one double coset – the identity – so we can start by letting µ1 = 1 and plunging
on with calculating the sets A11(g) for some elements g. For each such g, we can calculate by purely
local methods how many single cosets the double coset KgK should break up into. Either they all have
representatives in G(Q), in which case these appear in A11(g) and we’re done; or we’ll be able to identify
one that doesn’t, and then we’ve found an explicit element of G(Af ) that isn’t in G(Q)K. We can then
define µ2 to be this, and continue.

The only question now is: when do we stop? One way to do this is to use a mass formula.

7. Mass Formulae

Let’s return (temporarily) to thinking about a general connected reductive group G. Recall that the
quotient G(Q)\G(Af ) is compact. This implies that it has finite Haar measure; but the Haar measure
h on a locally compact group such as G(Af ) is only defined up to scaling.

Definition. If K is an open compact subgroup of G(Af ), we define the mass of K to be the ratio

m(K) =
h (G(Q)\G(Af ))

h(K)

4Note that I didn’t write “basis” here, since it may very well happen that L is not free as an OE-module if the class
number of E is > 1.
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This is independent of the normalisation we use for the Haar measure h, obviously; and it’s easy to
see that we can write it as

m(K) =
∑

µ∈Cl(K)

1

#Γµ
.

(This sum is well-defined, since although #Γµ depends on the choice of µ, if µ and µ′ are in the same
class in Cl(K) the groups Γµ and Γµ′ are conjugate, and hence have the same order.)

Notice that if K ′ ⊆ K, then we have m(K ′) = [K : K ′]m(K). So if we know the mass of one open
compact K, we know them all, as all open compact subgroups of G(Af ) are commensurable.

Theorem (Gan–Hanke–Yu, [GHY01]). If G is a definite unitary group of rank n for E/Q, where E
is imaginary quadratic, and KL is the open compact subgroup corresponding to a lattice L satisfying a
certain maximality property, we have

m(KL) =
1

2n−1
L(M)

∏
p∈S

λp,

where L(M) is a product of special values of Dirichlet L-functions, S is a finite set of primes and λp are
certain explicit constants depending on V .

(This is actually a special case of the theorem of Gan–Hanke–Yu, which applies more generally to
definite unitary groups and definite orthogonal groups over arbitrary totally real fields.)

So we can find the mass by evaluating a special value of an L-function! This allows us to tell when
we have found the whole set Cl(K), by comparing the result of the mass formula with the sizes of the
groups Γµi for the coset representatives µi we know so far.

8. An example in rank 2

I carried out the above computation for various standard Hermitian spaces of ranks 2 and 3 attached
to imaginary quadratic fields E/Q of class number 1, taking K = KL for L the statndard lattice.

For n = 2, and E = Q(
√
−d) for d = 1, 2, 3, 7, we find that the mass of the obvious double coset

equals the whole mass. The first case where something interesting happens is d = 11. Here the mass
formula gives m(K) = 5

24 . The obvious double coset G(Q)K has corresponding Γ group

G(Z) =

(
±1 0
0 ±1

)
∪
(

0 ±1
±1 0

)
of order 8. That leaves a mass of 5

24 −
1
8 = 1

12 unaccounted for. So we launch into decomposing some
Hecke operators.

The prime p = 3 splits in E, so we know that G(Q3) ∼= GL3(Q3), and the local factor of our level
group at 3 maps to GL3(Z3). So the interesting element of the local Hecke algebra corresponds to the

double coset of

(
1 0
0 3

)
∈ GL3(Q3), which splits into p + 1 = 4 double cosets. We find that only two

of them contain an element of G(Q) integral at all other primes, so either of the other two gives a new
element of Cl(K); and if we calculate the order of the corresponding Γ group, it turns out to be 12, so
we are done.

Since # Cl(K) = 2, we must in particular have a 2-dimensional space of automorphic forms of level K
and weight the trivial representation. This space contains the 1-dimensional space of constant functions,
which are obviously Hecke eigenvectors, with the eigenvalue for the Hecke operator at a split prime p
being 1 + p; this is not especially interesting. However, there is another eigenfunction, and we find that
its Hecke eigenvalues at the split primes are:

Prime 3 5 23 31 37 47 53
Eigenvalue -1 1 -1 7 3 8 -6

Maybe this isn’t so easy to guess, but these are also the Hecke eigenvalues of a modular form! We’ve
rediscovered (half of) the Hecke eigenvalues of the unique newform of weight 2 and level 11.
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Lecture 5

9. Galois representations

Last time, we saw an example of a (non-constant) automorphic form for a unitary group of rank 2 for
Q(
√
−11)/Q, and I said that the Hecke eigenvalues “look like” those of a modular form. Today I’ll give

you an interpretation of how and why this works.
Recall that if f is a modular eigenform of weight k and level N , which is new, cuspidal, normalized,

and a Hecke eigenform, then for any prime `, we can construct a Galois representation

ρf,` : Gal(Q/Q)→ GL2(Q`)

which is continuous, semisimple, unramified outside N`, and for each prime p - N`, satisfies

Tr ρf,`(Frobp) = ap(f)

where ap(f) is the Tp-eigenvalue of f .
Much more is known about the properties of ρf,`, of course, but the properties I’ve just written down

specify it uniquely, so we’ll content ourselves with those.
Now let G be a definite unitary group of rank n attached to an imaginary quadratic field E/Q, and

π an algebraic automorphic form for G of some level Kf . Let S be the set of primes that are split in E,
so G(Qp) ∼= GLn(Qp), and such that Kf ∩ G(Qp) = GLn(Zp). Suppose that for all primes p ∈ S, π is
an eigenvector for the Hecke operator corresponding to

1
. . .

1
p


under the isomorphism G(Qp) ∼= GLn(Qp) determined by a choice of prime p above p. Let ap(π) be the
corresponding eigenvalue. Then we have the following theorem:

Theorem (Shin [Shi11], Chenevier–Harris [CH]). There exists a unique semisimple Galois representation

ρπ,` : Gal(E/E)→ GLn(Q`)

satisfying
Tr ρf,`(Frobp) = ap(π)

for all primes p of E above a prime p ∈ S.

The set S contains all but finitely many degree 1 primes of E, so the Frobenius elements at these
primes are dense in Gal(E/E); thus ρπ,` is clearly unique.

Note that Gal(E/E) is an index 2 subgroup of Gal(Q/Q), and conjugation by the nontrivial element
σ ∈ Gal(Q/Q)/Gal(E/E) interchanges the conjugacy classes of Frobp and Frobp for p = pp̄ ∈ S. So
unless we have ap̄(π) = ap(π) for all such p, which doesn’t usually happen, the conjugate ρσπ,` can’t be

isomorphic to ρπ,` and hence ρπ,` cannot be extended to a representation of Gal(Q/Q). However, the
representations ρπ,` and ρσπ,` are related: we have an isomorphism

ρσπ,`
∼= ρ∨π,`(n− 1) (“polarization”)

where ρ∨π,` is the dual representation and (n− 1) denotes twisting by the (n− 1)-st power of the `-adic

cyclotomic character χ` : Gal(E/E)→ Z×` .
So our observation about the non-constant trivial weight form on the standard rank 2 unitary group for

Q(
√
−11)/Q can be explained as follows: if π is this form (and ` is any prime), the Galois representation

ρπ,` is isomorphic to the restriction of ρf,` to Gal(E/E), where f is the weight 2 cusp form of level 11.

Exercise. Show that ρ = ρf,`|Gal(E/E) satisfies the polarization identity. (Note that in this case ρσ ∼= ρ,

so we need to check that ρ ∼= ρ∨(1).)

There is a very general philosopy, sometimes referred to as the “global Langlands program”, which
predicts (among other things) that:

• “Nice” automorphic forms on ResK/Q GLn, where K is any number field, should correspond to

compatible families of n-dimensional `-adic representations of Gal(K/K).
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• Automorphic forms on a subgroup G ⊆ ResK/Q GLn should correspond to Galois representations

preserving some extra structure (such as a symplectic form on Q
n

` , or a polarization as above).
• Natural operations on Galois representations correspond to maps between automorphic forms

(“Langlands functoriality”).

These are all very much open conjectures in general, although many important special cases are known.
Let me just give a few examples of what I mean by “natural operations on Galois representations”.

For instance, let’s say f is a modular eigenform; then, thanks to Deligne, we know how to construct
the corresponding 2-dimensional `-adic representations ρf,`. For each m ≥ 2, we can take the symmetric

power Symm ρf,`; this is an (m + 1)-dimensional `-adic representation of Gal(Q/Q), and one might
reasonably expect that it corresponds to some automorphic form on GLm+1. This form – which, I stress,
is only conjectured to exist – is called the “symmetric power lifting” of f . At the moment I believe the
existence of the symmetric power lifting is only known for m = 2, 3, 4 and 9.

Here’s another example. Let’s say we take two definite unitary groups U(n1) and U(n2) associated to
the same CM extension E/F , and we consider eigenforms π1 and π2 on U(n1) and U(n2) respectively.
We know these have Galois representations ρπ1,` and ρπ2,`, of dimensions n1 and n2. So we can consider
the representation ρπ1,`⊕ρπ2,`, and ask: does this come from an automorphic form on U(n1 +n2)? This
can’t quite work as I’ve stated it, since the direct sum doesn’t satisfy the polarization identity; but we
can fix this by twisting the two representations by appropriately chosen characters. The corresponding
automorphic forms on U(n1+n2) are known as endoscopic lifts, since they are associated to the endoscopic
subgroup5 U(n1)× U(n2) of U(n1 + n2).

10. Some examples in rank 3

I’ve done some calculations of automorphic forms on the definite unitary group attached to the stan-
dard 3-dimensional Hermitian space for Q(

√
−7)/Q. I took the level group to be the group KL attached

to the standard lattice O⊕3
E .

In this case, the possible weights are the irreducible representations of the compact Lie group G(R) ∼=
U(3). These are indexed by pairs6 of integers (a, b), with the representation corresponding to (a, b)

being a certain explicit subspace of Syma(W ) ⊗ Symb(W∨) where W is the 3-dimensional standard
representation.

It turns out that if a 6= b, then Galois representation attached to a form of weight (a, b) cannot possibly
extend from Gal(E/E) to Gal(Q/Q), because if π has weight (a, b), the conjugate representation ρσπ,`
is the Galois representation attached to an eigenform of weight (b, a) and thus cannot be isomorphic to
ρπ,`. So let’s look at some examples in “parallel” weights (a, a).

In table 1, I’ve listed each form of parallel weight ≤ 4 (or, rather, each orbit of forms up to the Galois
action on the coefficients). For each of these, one can try to test whether the Galois representation
looks like it might extend to Q, by checking whether the Hecke eigenvalues at pairs of primes above
the same prime of Q coincide. One can also try to recognise the form as an endoscopic lift from
U(1)×U(2), in which case the form will have Hecke eigenvalues at split primes given by ap(π) = ω1(p)+
ω2(p)ap(f), for some modular form f and Groessencharacters ω1, ω2 of E, and the Galois representation

of ρπ,` is isomorphic to ω1,`⊕
(
ω2,` ⊗ ρf,`|Gal(E/E)

)
, where ωi,` are the `-adic characters attached to the

Groessencharacters ωi via class field theory. (It may even happen that the modular form f has CM by
E, in which case ρf,`|Gal(E/E) is reducible and ρπ,` is a direct sum of three characters.)

So one can see here explicit examples of several kinds of Langlands functoriality at work, as well as
some examples of automorphic forms that genuinely come from U(3) and not from any simpler group.
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[CH] Gaëtan Chenevier and Michael Harris, Construction of automorphic Galois representations, Stabilisation de la

formule des traces, variétés de Shimura, et applications arithmétiques, to appear.
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