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Introduction

Quintessential for our understanding of classical modular forms are their vari-
ous algebraic descriptions. From these one obtains in particular the following
properties for the space of cusp forms: The eigenvalues of the Hecke operators,
and hence also the coefficients of normalized Hecke eigenforms are algebraic in-
tegers. The growth of the absolute values of these eigenvalues is described by
the Ramanujan-Petersson conjecture. The Hecke operators satisfy the Eichler-
Shimura relations. Finally, one can attach interesting Galois representations to
cuspidal Hecke eigenforms.

In analogy to classical modular forms, Goss introduced and studied in [19]
so-called Drinfeld modular forms in the realm of function fields. For these
many questions which have long been answered in the classical context are still
open. An important tool present in the classical situation is the isomorphism of
Eichler and Shimura, which allows an interpretation of modular forms as étale
cohomology classes. In the function field setting no analogue of this isomorphism
is known.

Here we propose to bridge this gap, at least for Drinfeld modular forms of
rank two. The novelty in comparison with earlier investigations is the applica-
tion of the theory of crystals over function fields, developed recently by R. Pink
and myself, [4].

In the case at hand, this theory provides a description of Drinfeld modular
forms as cohomology classes of crystals over function fields. Crystals in turn
have étale realizations and this gives an étale description of Drinfeld modular
forms. Using the latter, one can attach Galois representations to cuspidal Hecke
eigenforms. Furthermore, the description in terms of crystals should yield a
deeper understanding of the Hecke eigenvalues and their growth.

The crystals we obtain should be thought of as a motive over function fields
representing a corresponding space of Drinfeld cusp forms. Interpreted this
way, the Eichler-Shimura isomorphism says that the analytic realization of the
motive is, as a Hecke-module, isomorphic to the space of Drinfeld cusp forms
(of a certain weight and level). Therefore one is also interested in the fine
structure of these crystals. We show that they are similar to uniformizable t-
motives (in the sense of Anderson) and their simple subquotients have real or
complex multiplication. The latter is reflected by the fact that the attached
Galois representations are all one-dimensional.

Review of the theory of classical modular forms

First we introduce some notation, cf. [31]: For an integer N ≥ 5, we denote
by Y1(N)

gN→ Spec Z[1/N ] the moduli space of elliptic curves over Z[1/N ] with
Γ1(N)-structure and by X1(N)

ḡN→ Spec Z[1/N ] the compactification from [31].

Let E1(N)
fN→ Y1(N) be the universal elliptic curve with unit section e and

relative sheaf of differentials ω := e∗ΩE1(N)/Y1(N) along the section e. This line
bundle can be extended canonically to a line bundle ω̄ on X1(N), [31] 10.13.9.1.
By ‘cusps’ we denote the cusps of X1(N)/C and for x ∈ cusps we denote by
Γx the corresponding stabilizer subgroup of Γ1(N). In the following let l be a
prime not dividing N .

We define the following objects:

Scl
n (N,C) := H0(X1(N)/C, ω̄⊗n(−cusps)),

the space of (classical) holomorphic cusp forms of weight n and level N .
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H1
par,n(N,Z) := Ker

(
H1(Γ1(N),Symn Z2)→

∑
x∈cusps

H1(Γx,Symn Z2)
)
,

the parabolic cohomology of Γ1(N) with coefficients in the n-th symmetric power
of the tautological representation Z2 of GL2(Z).

H̃1
sing,n(N,Z) :=

Im
(
H1
c (X1(N)/C,SymnR1fN∗Z)→ H1(X1(N)/C,SymnR1fN∗Z)

)
,

where H1
c and H1 are the singular cohomology groups with compact support,

respectively without supports.

R̃1
ét,n(N,Ql) := Im

(
R1

étgN ! Symn(R1
étfN∗Ql)→ R1

étgN∗ Symn(R1
étfN∗Ql)

)
,

where R1
ét represents the first right derived functor of a morphism between étale

topoi. In particular, R̃1
ét,n(N,Ql) is a constructible étale Ql-sheaf on the scheme

Spec Z[1/N ].
On any of the above four objects, one has an action of the Hecke algebra

HN of correspondences for Γ1(N), [51] Ch. 3.1.

If Scl
n (N,C) denotes the space of antiholomorphic cusp forms of weight n,

then there are canonical isomorphisms

Scl
n+2(N,C)⊕ Scl

n+2(N,C) ∼= H1
par,n(N,Z)⊗Z C ∼= H̃1

sing,n(N,Z)⊗Z C,

the so-called Eichler-Shimura isomorphisms, cf. [51, 56]. The comparison of
singular and étale topologies yields the isomorphism

H̃1
sing,n(N,Z)⊗Z Ql

∼= R̃1
ét,n(N,Ql)/Q̄.

All the above isomorphisms are Hecke equivariant with respect to the action of
HN . Finally, for any prime p 6 | lN , one has the Eichler-Shimura relation for the
Hecke operator Tp on the special fiber of R̃1

ét,n(N,Ql) at Spec Fp.
As H1

par,n(N,Z) and H̃1
sing,n(N,Z) are finitely generated Z-modules, it fol-

lows immediately that the Hecke eigenvalues al(f) of a cuspidal Hecke eigen-
form f are algebraic integers, [51] Thm. 3.48. The description via étale coho-
mology together with Deligne’s theorem (the Weil conjectures) gives a proof
of the Ramanujan-Petersson conjecture for the growth of the Hecke eigenval-
ues, [9]. Furthermore, this description yields a continuous Galois representation
ρf,l : Gal(Q̄/Q) → GL2(Q̄l) attached to any Hecke eigenform f and prime l,
cf. [9] and [24]. The well-known relation traceρf,l(Frobp) = ap(f) for a prime
p 6 |Nl is an immediate consequence of the Eichler-Shimura relation.

Drinfeld modular forms

For the analogy between elliptic curves and Drinfeld modules as well as for
basics of the theory of Drinfeld modules, we refer to Sections 1 and 4, and
[23]. A rather complete treatment of Drinfeld modular forms, will be given in
Section 5. We first need to introduce some more notation.

Let C be a complete smooth curve over Fq and ∞ a chosen closed point
on it. Let A be the ring of regular functions on C r {∞} and K its field of
fractions. These take on the role of Z and Q. The completion of K at ∞ is
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denoted K∞, and C∞ will be the completion of an algebraic closure of K∞.
Furthermore define Ω(C∞) := P1(C∞) r P1(K∞). This set can be regarded in
a natural way as the C∞-points of a rigid analytic space Ω over K∞, cf. [42] or
Section 3. We also set Ω̄(C∞) := Ω(C∞) ∪ P1(K). Let n be a proper non-zero
ideal of A and let A[1/n] be the ring of regular functions on SpecArSuppA/n.

Let Mn
gn→ SpecA[1/n] denote the moduli space of Drinfeld modules over

A[1/n] with a full level n-structure, cf. Definition 1.6. By Mn

ḡn→ SpecA[1/n]
its compactification as given by Drinfeld is denoted. The existence of these
spaces follows from [10], §8, and [31], Chap. 7. On Mn there exists a universal
Drinfeld module ϕn. The rigidification Mrig

n of Mn/K∞ can be identified with
a finite disjoint union

∐
Γν\Ω, where the Γν are suitable arithmetic subgroups

of GL2(K). The natural compactification of the latter space is the rigidification
M

rig

n of Mn/K∞, which in turn can be described as
∐

Γν\Ω̄. Let ωn be the line

bundle
∐

Γν\(C∞×Ω), where an element γ =
(
a b
c d

)
∈ Γν acts on a pair (z, w)

by γ(z, w) = ( z
cw+d ,

aw+b
cw+d ). This bundle can be canonically extended to a line

bundle ω̄n on all of Mrig
n , cf. [18], §1, or [15], §6. As in the classical situation, we

denote by ‘cusps’ the cusps of Mn/C∞. Corresponding to the decomposition
Mrig

n
∼=
∐
ν Γν\Ω we write cusps =

∐
cuspsν . For x ∈ cuspsν , we let Γx be the

corresponding stabilizer subgroup of Γν . Further discussions may be found in
[7] and [42].

Following Goss, [18] §1, one defines the space of Drinfeld cusp forms of weight
n and full level n as

Sn(n,C∞) := H0(M
rig

n , ω̄⊗nn (−cusps)).

Let ΩA be the module of differentials of A and define for any A[GL2(K)]-module
M its dual as M∗. Based on the results in [55] by Teitelbaum, one considers
the relative group cohomology

H1
rel,n(n, A, ν) := H1(Γν rel {Γx : x ∈ cuspsν}, (Symn HomA(Yν ,ΩA))∗)

for suitable projective A-modules Yν of rank 2 and obtains an isomorphism

Sn+2(n,C∞) ∼=
⊕
ν

H1
rel,n(n, A, ν)⊗A C∞.

In the function field context, too, one has a natural action of a Hecke algebra
on these spaces, [18], §3, or [16]. It will be shown that the above isomorphism
is Hecke equivariant. In particular, this shows that the Hecke eigenvalues of the
space of cusp forms are integral over A. In Section 6, we will review all of this
in detail.

Prior to this work, the above two isomorphism were essentially the only
known characterizations of Drinfeld modular forms.

Crystals over function fields

In the following, we want to give a brief account of the theory of crystals
over function fields. As a guiding example, one may think of the theory of
constructible étale Ql-sheaves over schemes in characteristic p 6= l. However,
there are also analogies to the theory of algebraic D-modules. For a morphism
f : X → Y of finite type, both of these theories have the six functors f∗, ⊗, f!,
f !, Hom, f∗ postulated by Grothendieck for any good cohomological theory.

The theory of crystals over function fields, constructed by R. Pink and my-
self, differs from the above two, in that the coefficients as well as the schemes
are set in characteristic p. Furthermore, in comparison to the étale theory, the
coefficient systems are arbitrary finitely generated Fq-algebras.

6



The theory of crystals over function fields possesses only the first three of
the above six functors. Nevertheless, it is more flexible than Anderson’s theory
of t-motives, which essentially possesses only the first two of the above functors.
Important objects in our theory are given by families of Drinfeld modules or
more generally of t-motives. To such, one associates a τ -sheaf, similarly to [53],
and the latter represents a crystal.

A further aspect of this theory is its connection with the étale theory of
constructible sheaves with characteristic p coefficients. For a coefficient ring B
which is a finite Fq-algebra there exists a covariant functor F 7→ F ét between
crystals on X with B-coefficients and constructible étale B-sheaves on X. This
functor induces an equivalence of the respective categories which is compatible
with the functors f∗,⊗, Rf!.

As a first application of the theory of crystals over function fields, in [4]
Ch. 7, we are able to give an algebraic proof of the rationality of the local L-
function of a family of Drinfeld modules, as conjectured by Goss, [53]. The
first proof of this, by Taguchi and Wan in [53], was of an analytical nature.
Essential for the algebraic proof is a Lefschetz trace formula for crystals, cf.
[4]. As a second application one obtains results on special values of Goss’ global
L-functions at negative integers, as these may be interpreted cohomologically as
local L-functions of crystals, [3]. This contributes to a proof of Goss’ conjecture
that global L-functions over function fields can be meromorphically continued
to all of Zp×C∗∞, which replaces the complex plane for L-functions over number
fields.

Drinfeld modular forms and crystals

Denote by Fn the crystal attached to the universal Drinfeld module ϕn on Mn.
This is a family of pure uniformizable A-motives of rank 2. The theory of crystals
now suggests, in analogy to the classical situation, the following definition:

Sn+2(n, A) := R1gn!

(
Symn Fn

)
,

where R1gn! is the direct image with compact support functor on crystals for
the morphism gn. This is a crystal on SpecA[1/n] with coefficients in A. As our
results described below suggest, the crystal Sn+2(n, A) should be thought of as
a motive over function fields for the cusp forms of weight n+ 2 and level n.

For a place v of C different from ∞ let p denote the corresponding prime
ideal of A and Av the completion of A with respect to v. The inverse system
(Fn ⊗A A/pi)éti∈N represents a constructible étale Av-sheaf on Mn, which we
denote F ét,v

n . We define

R1
ét(n,Av) := R1

étgn!

(
Symn F ét,v

n

)
,

which is a constructible étale Av-sheaf on SpecA[1/n].

We now describe some of our results:

a) An Eichler-Shimura isomorphism for cusp forms:

In [1], Anderson describes a procedure which attaches to a t-motive M over K∞
a vector bundle M{t} over the rigid space SpmK∞〈t〉 together with a σ × id-
linear operator τ . The module M{t} should be thought of as the analytic motive
attached to M and (M{t})τ as its Betti cohomology. A similar procedure can
be applied to the crystal Sn+2(n, A), cf. Section 9. By (M{t})τ one denotes the
τ -invariants of M{t}.
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Based on Teitelbaum’s description of Drinfeld modular forms as harmonic
cocycles on the Bruhat-Tits tree, we construct in Section 10 a map⊕

ν

H1
rel,n(n, A, ν)

∗ −→
((
Sn+2(n, A)/K∞

)
{t}
)τ

(1)

and show it to be an isomorphism. This should be viewed as an Eichler-Shimura
isomorphism. It ‘says’ that the Betti realization of the ‘motive’ Sn(n, A)/K∞
after changing coefficients to C∞ is dual to the space of cusp forms Sn(n,C∞).
Note that there is no doubling up as in the classical case.

b) An Eichler-Shimura isomorphism for double cusp forms:

We have a similar construction for the space of double cusp forms: Following
Goss, [18], Def. 1.8.3, one defines the space of Drinfeld double cusp forms of
weight n as

S2
n(n,C∞) := H0(M

rig

n , ω̄⊗nn (−2 cusps)).

This is a subspace of Sn(n,C∞) of codimension equal to the number of cusps of
Mn if n > 2 and equal to the number of cusps minus the number of connected
components if n = 2.

Let jn be the open embedding of Mn into Mn. The extension by zero
jn!Fn is the smallest crystal which extends Fn to Mn. It turns out that there is
another natural extension of Fn to Mn, namely the so-called maximal extension
F̃n := jn#Fn, cf. Section 11. It is based on work of Gardeyn, [13]. In Section 11,
we show that for each n ≥ 0 there is a short exact sequence of crystals on Mn:

0 −→ jn! Symn(Fn) −→ Symn(F̃n) −→ Gn −→ 0.

The sheaf Gn can, up to twists with projective A-modules of rank one, be
identified with the unit crystal supported on Mn r Mn. In Section 12, it will
be shown that there is a natural isomorphism

S2
n(n,C∞)∗ ∼=

((
R1ḡn∗(Symn F̃n)/C∞

)
{t}
)τ
⊗A C∞. (2)

c) Sn(n, A) as a Hecke-module:

As in the classical theory, one has an action of Hecke operators on the spaces
of Drinfeld cusp forms (and double cusp forms) in their various incarnations:
sections of a line bundles, holomorphic functions on Ω̄(C∞), harmonic cochains,
crystals and étale sheaves. We show that all isomorphisms among these are
equivariant for the action of the Hecke operators, cf. Sections 6, 10 and 13.

Since the Hecke-algebra is commutative, the above action allows us to de-
compose Sn(n, A) into generalized eigenspaces. Let M1, . . . ,Mλ be torsion free
subfactors of Sn(n, A), such that the Mi ⊗A K form a complete list of non-
isomorphic simple subfactors of Sn(n, A) ⊗A K. The Mi will be shown to be
pure uniformizable Ai-motives of rank 1 for a suitable finite extension Ai of A,
and a suitable characteristic depending on i. We also show that the subfactors
of the crystal R1gn∗Gn are isomorphic to twists of the unit-motive by finite order
characters, which depend on the cusps and can be given explicitly.

d) Galois representations attached to eigenforms:

The above decomposition of Sn(n, A) corresponds to decomposing the Hecke-
module Sn(n,C∞) into generalized eigenspaces. Let fi denote the normalized
eigenform corresponding to Mi.

8



Using the étale realization of the crystal Sn+2(n, A) and its compatibility
with pushforwards with proper support, one obtains a natural isomorphism

(Sn+2(n, A)⊗Av)ét ∼= R1
ét(n,Av), (3)

which clearly is Hecke-equivariant.
Similar to the classical case, this will enable us to attach 1-dimensional v-

adic Galois representations ρfi,v to the normalized cuspidal eigenforms fi for
any finite place v of Ai. The Eichler-Shimura relation in characteristic p implies
that Tp = Frobp for all prime ideals p prime to npv. In particular, ρfi,v(Frobp) =
ap(fi) in Aiv, where ap(fi) is the eigenvalue of fi for the Hecke operator Tp. The
results in c) and d) imply that ρfi,ν has finite image whenever fi is a cuspidal
eigenform but not a double cusp form. The simple structure of the crystal
S0(n, A) implies the same if fi is any cuspidal eigenform of weight 2. For doubly
cuspidal eigenforms fi of weight greater than two, the representation ρfi

will in
general have infinite image, as can be seen in examples. This will be explained
in detail in Sections 14 and 15.

A survey

Let us now briefly survey the contents of the present work section by section.
The first seven sections are largely a review of known material or material that
follows very closely the well-known treatment in the case of modular forms. In
Section 1, we recall the definitions and main properties of the algebraic moduli
spaces MK of Drinfeld modules with some level-K structure, e.g. [10], [35].
Section 2 is an expanded version of the discussion of the compactification MK
of MK as given in Drinfeld’s seminal paper [10]. We focus mainly on an explicit
treatment of the cusps, which seems not to exist in the literature.

As Drinfeld’s upper half plane will be important for various explicit compu-
tations, we give a fairly complete treatment of it and its quotients by arithmetic
subgroups in Section 3. This is first used, in our review of the analytic moduli
spaces of Drinfeld modular forms in Section 4. This material mainly stems from
[10] and [8].

The following two sections introduce Drinfeld modular forms in their various
incarnations and Hecke operators on them. This draws from various sources,
e.g., [15, 16, 19, 20, 55]. We give a local as well as an adelic description for all
these objects. Certainly none of the adelic parts is available in the literature.
Our treatment follows closely that in [52]. Finally, in Section 7, the main facts
from the theory of crystals over function fields as developed in [4] are recalled.

The material starting with Section 8 is the core of this article. Before we
can come to the first main result of the article, namely a description of Drinfeld
modular forms in terms of crystals, some technical issues on families of Drinfeld
modules, respectively t-motives have to be resolved.

In Section 8 we develop analytic sites of τ -sheaves and crystals, following
closely the theory of algebraic crystals in [4]. An additional difficulty lies in the
fact that an extension by zero does not necessarily exist in the analytic context,
as one may have essential singularities. Also various compatibilities have to be
verified, when passing between different sites.

Then in Section 9, we discuss purity and uniformizability for families. The
first is modeled on [41] and the second is an extension of Anderson’s pointwise
treatment of uniformizability as given in [1]. Having all the above tools available,
in Section 10, we state and proof the Eichler-Shimura isomorphism for Drinfeld
cusp forms. Uniformizability is a key in our proof. The main result of [40] is
also an important auxiliary result.

The proof for double cusp forms is more involved, and uses the concept
of maximal extension as introduced by Gardeyn in [13]. We further develop
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this theory in algebraic, analytic and formal contexts in Section 11. Some
rather technical computations are needed for certain explicit results on maximal
extensions of the crystal corresponding to the universal Drinfeld-module on MK.
Using these results, we can finally state and proof in Section 12 the Eichler-
Shimura isomorphism for double cusp forms.

In Section 13 we define a Hecke action on our crystalline realization of Drin-
feld modular forms and show that it is compatible with the usual action under
our Eichler-Shimura isomorphism. Also we give a (non-canonical) decomposi-
tion of this realization into ‘simple’ pieces under the Hecke action. An Eichler-
Shimura relation on the special fiber of MK over p is derived for the Hecke-
operator Tp. In the following section, we construct Galois representations from
the ‘simple’ subfactors mentioned above. In this way, we can attach a Galois
representation to any cuspidal Drinfeld modular eigenform, where the relation is
made precise by using the Eichler-Shimura relation. The final section concludes
with an example, where some of the results of this article will be made explicit.

There still remain various open questions for future work.

(i) There should exists a canonically defined subspace of Hecke eigenforms
which are cuspidal but not doubly cuspidal. This space needs to be iden-
tified. Perhaps one can use Poincaré series to give simple explicit repre-
sentatives.

(ii) One needs to relate the L-functions attached to the factors of the crys-
talline realization of Drinfeld modular forms to the L-functions of modular
forms as defined by Goss. This would immediatly yield their holomorphy
by the results in [3].

(iii) At this point there are no purity results for the pushforward of pure fam-
ilies of t-motives with compact support. As examples show, one cannot
expect purity in the same way as for l-adic cohomology, cf. Example 15.5.
However it should be possible to give ‘bounds on the weights’. (As their
is no duality for crystals upper bounds for weights will not imply lower
bounds for weights!) This should yield some results on the growth of
the eigenvalues of the Hecke operation in the spirit of the Ramanujan-
Petersson conjecture. Also the example in Section 15 suggests that the
subfactors that arise from Drinfeld cusp forms of fixed weight are pure,
however, of verying weights.

(iv) Despite the fact that canonical compactifications for Drinfeld modular
schemes of higher rank Drinfeld modules have not been constructed, it
does not seem unreasonable to hope to generalize some our results to
this setting. For many purposes, such as the analysis of the maximal
extension near cusps, it is enough to have a combinatorial description of
the codimension one points of a compactification near the cusps, and this
might be possible.
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and various helpful suggestions in the initial and most important the final stages
of this work, I would like to express my sincere gratitude to Professor R. Pink.
Many thanks also to Francis Gardeyn for many helpful discussions, mainly re-
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ing out a mistake in an early definition of some moduli problems. Finally,
the author thankfully acknowledges the support of the DFG in the form of a
Habilitationsstipendium through the initial phase of this project.
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Notation

• p will be a prime, q a power of p and k the field of q elements.

• By X, Y , etc., we denote schemes over k. Their absolute Frobenius en-
domorphism with respect to k is denoted by σX , σY , etc. When it seems
redundant, the subscripts are often omitted.

• For a field L we denote by Lsep and Lalg a separable, respectively algebraic
closure.

• We fix a smooth, projective, geometrically connected curve C over k and
a closed point ∞ on it.

• The ring of regular functions on C r {∞} is denoted by A, its function
field by K and its set of maximal ideals p by Max(A). Because C is
geometrically connected, k is the field of constants of K.

• For X, A as above the projection of X × SpecA onto the first and second
factor are denoted by pr1 and pr2, respectively.

• For a non-zero ideal n of A, we define its degree deg(n) := dimk A/n. By
V (n) the support of A/n is denoted and by A(n) ⊂ K the ring of regular
functions on SpecAr V (n).

• For any place v of K, we denote by Kv the completion of K at v, by πv
a uniformizing parameter, by Av its ring of integers and by kv its residue
field. We set dv := [kv : k] and qv := card(kv).

• By | . |∞ we denote that norm on K∞ with |π∞|∞ = q∞
−1, and by v∞ :

K∞ → Z ∪ {∞} the valuation with v∞(π∞) = 1. In particular, |a|∞ =
cardA/(a) = qdeg(a).

• C∞ will denote the topological closure of an algebraic closure of K∞, OC∞
its ring of integers and mC∞ its maximal ideal. The choice of the algebraic
closure of K∞ provides us with an embedding ι∞ : A → K∞ → C∞. By
| . |C∞ we denote the unique norm on C∞ which extends | . |∞. Analogously
one defines Cv for any place v of SpecA.

• Say X is a scheme over a ring R ∈ {A,A(n),K}. Let S be an R-algebra.
Then bS is defined as the base change map X ×SpecR SpecS → X.

• Define Â := lim←−A/n, where the limit is taken over all non-zero ideals of
A, and let AfA := Â⊗A K be the finite adeles of A. By AA := AfA ×K∞
we denote the adeles of A.

• An A-scheme X will be scheme over A. Similarly, we define A-rings and
A-fields. The corresponding morphism A → Γ(X,OX) will be denoted
by ιX .

• For any ring R of characteristic p, let R{τ} denote the non-commutative
ring of polynomials over R in the indeterminate τ subject to the non-
commutation rule τr = rqτ for r ∈ R. By degτ , we denote the degree of
a polynomial in τ .

• For an element x ∈ R ⊗k A, we denote by x(qi) the element (σ × id)i(x).
We define this notation also for matrices α over R ⊗ A by defining α(qi)

as the matrix obtained by applying x 7→ x(qi) to any matrix entry.
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1 Drinfeld modular varieties, the algebraic side

In this section we recall the algebraic moduli problem classifying Drinfeld mod-
ules of rank r with a level structure. Thereby we set up the notation for various
moduli problems we need in the sequel. The main source is [10].

1.1 Definition of a Drinfeld-module

Following [10], we first define a Drinfeld-module over an A-field F and then use
this to define it over an arbitrary A-scheme S.

Definition 1.1 A Drinfeld-A-module ϕ on F is a homomorphism

ϕ : A −→ F{τ} : a 7→ ϕa =
∑
i≥0

αi(a)τ i,

satisfying the following two conditions:

(i) α0(a) = ιF (a) for all a ∈ A.

(ii) ϕa 6= ιF (a) for at least one a ∈ A.

We often simply speak of Drinfeld-modules instead of Drinfeld-A-modules if the
ring A is understood. The kernel of ιF is called the characteristic of ϕ. If
ker(ιF ) = (0), then ϕ is of generic characteristic.

Given a Drinfeld-module ϕ, by [10], Prop. 2.1, there exists a unique positive
integer r, called the rank of ϕ, such that degτ ϕa = r deg(a) for all a ∈ A.

For notational convenience, we let G/S be the category of S-group scheme
k-vector spaces where S is any A-scheme. Let V be any one-dimensional F -
vector space. Viewing V as a torsor over Ga/F , one may identify F{τ} with
EndG/F (V ), which is a more conceptual definition of F{τ}. This leads to the
following definition, cf. [10].

Definition 1.2 A Drinfeld-module ϕ = (L, ϕ) on S of rank r consists of a line
bundle L = Lϕ on S and a homomorphism

ϕ : A −→ EndG/S(L) : a 7→ ϕa,

satisfying the following two properties:

(i) For any A-scheme homomorphism SpecF → S, where F is a field, the
induced map A −→ EndG/F (LF ) is a Drinfeld-module on F of rank r,
where LF is the pullback of L along SpecF → S.

(ii) For any a in A, the derivative of ϕa in the tangent space of L along the
zero section is multiplication by ιS(a).

A homomorphism ξ : ϕ→ ϕ′ of Drinfeld-modules on S, called an isogeny, is
a surjective ξ ∈ HomG/S(L,L′) such that for all a ∈ A one has ξ ◦ ϕa = ϕ′a ◦ ξ.

Remark 1.3 Suppose that every line bundle on R is trivial. Then by [10],
Prop. 5.2, any Drinfeld module over an A-ring R, is isomorphic to the trivial
line bundle together with a homomorphism

ϕ : A→ R{τ} : a 7→
∑
i

αi(a)τ i

such that α0 = ιR, and for all a ∈ A one has degτ ϕa = r deg(a) and αr deg(a)(a) ∈
R∗. This is called the standard form of a Drinfeld-module.

A morphism ξ : ϕ→ ϕ′ of Drinfeld-A-modules in standard form is an element
ξ ∈ R{τ} such that ξϕa = ϕ′aξ ∈ R{τ} for all a ∈ A. It is an isomorphism
precisely when ξ ∈ R∗ ⊂ R{τ}.
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1.2 Level structures

We fix an ideal n of A, an A-scheme S and a Drinfeld-module ϕ on S of rank r.

Definition 1.4 The n-torsion scheme ϕ[n] of ϕ is the intersection of the kernels
of ϕa : L → L for all a ∈ n.

The scheme ϕ[n] ⊂ L is again in G/S and it inherits an action of A which factors
through A/n. A homomorphism between Drinfeld-modules ϕ and ϕ′ induces a
homomorphism of S-group schemes ϕ[n]→ ϕ′[n].

Suppose S = SpecR, n = (a) is principal and ϕ is in standard form. For an
element f ∈ R{τ}, we denote by f(x) the polynomial in R[x] obtained from f

by replacing τ i by xq
i

for all i. Then ϕ[n] is the scheme SpecR[x]/(ϕa(x)). The
polynomial ϕa(x) is monic of degree |a|r∞ with non-zero coefficients only for the
terms xq

j

, j = 0, . . . , r deg(a).
For any abelian group G, by GS we denote the constant group scheme G

on S. The following result can be extracted from [10], Prop. 2.2 and 2.3 and
the proof of Prop. 5.4:

Proposition 1.5 The scheme ϕ[n] is finite flat over S of rank card(A/n)r. Its
étale locus on S is precisely the pullback along S → SpecA of SpecA(n).

For T ⊂ L which is finite flat over S, we denote by [T ] the corresponding
relative Cartier divisor.

Definition 1.6 A level n-structure of a Drinfeld-module ϕ is an A-module ho-
momorphism ψ : (n−1/A)r → ϕ[n](S) such that

∑
g∈(n−1/A)r [ψ(g)] = [ϕ[n]] as

divisors.

If the scheme ϕ[n] is étale over S, then a level n-structure is simply an isomor-
phism (n−1/A)rS → ϕ[n] in G/S.

1.3 The moduli problem

For any non-zero ideal n of A, one considers the fibered category Mr
n over A-

schemes that assigns to each A-scheme S the isomorphism classes of pairs (ϕ,ψ),
where

(i) ϕ is a Drinfeld-module on S of rank r,

(ii) ψ is a level n-structure of ϕ.

Mr
n is called the moduli functor for rank r Drinfeld-modules with level n-struc-

ture.
For a non-zero ideal n of A, we define Krn as the kernel of the canonical map

GLr(Â)→ GLr(A/n). From [10], Cor. on p.577 and from p.578, we obtain:

Theorem 1.7 Suppose that V (n) contains at least two primes, then Mr
n is

representable by a regular affine A-scheme Mr
n of finite type and dimension r.

Over SpecA(n), the scheme Mr
n is smooth of relative dimension r − 1.

For n′ ⊂ n, the induced morphism Mr
n′ → Mr

n is finite and flat. Over
SpecA(n′) it is a Galois cover with Galois group isomorphic to Krn/Krn′ .

As we will mainly consider moduli spaces for rank 2 Drinfeld-A-modules, we
abbreviate Mn := M2

n and K(n) := K2
n.
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1.4 More level structures

We now define further level structures. They will be needed for example when
defining Hecke-operators as geometric correspondences.

Let K be a compact open subgroup of GLr(Â). An ideal n is called a conduc-
tor for n if K(n) ⊂ K. Such an ideal always exists and the maximal such ideal
is called the minimal conductor of K. The action of K ⊂ GLr(Â) ⊂ GLr(Af )
on (Af )r preserves Âr ⊂ (n−1Â)r. Therefore K acts on (n−1/A)r, and for any
conductor n, this action on factors via GLr(A/n).

Let ϕ be a Drinfeld-module of rank r on an A(n)-scheme S and n a conductor
of K as above.

Definition 1.8 Two level n-structures ψ,ψ′ : (n−1/A)r → ϕ[n](S) are called
K-equivalent if there exists g ∈ K such that ψ′ = ψ ◦ g. A level K-structure [ψ]
of ϕ is a K-equivalence class of level n-structures ψ.

For an A(n)-scheme S and a Drinfeld-A-module ϕ on S, denote by S(ϕ[n])
the étale Galois cover with Galois group GS,ϕ obtained from S by adjoining
a complete set of n-torsion points of ϕ to S, c.f. Proposition 1.5. The moduli
problem of rank r Drinfeld-modules with level K-structure is given by the fol-
lowing fibered categoryMr

K on A(n)-schemes. To an A(n)-scheme S one assigns
the set of isomorphism classes of pairs (ϕ, [ψ]), where

(i) ϕ is a Drinfeld-module on S of rank r,

(ii) [ψ] is a level K-structure of the pullback of ϕ to S(ϕ[n]) such that the
Galois group GS,ϕ preserves the K-equivalence class of ψ.

Two pairs (ϕ, [ψ]) and (ϕ′, [ψ′]) are isomorphic if there is an isomorphism ξ :
ϕ → ϕ′ on S such that ξ′ ◦ ψ is K-equivalent to ψ′, where ξ′ is the pullback of

ξ along S(ϕ[n]) → S to S(ϕ[n])
∼=→ S(ϕ′[n]). To see that Mr

K defines a fibered
category, we need the following lemma:

Lemma 1.9 Let π : S → S′ be a morphism of A(n)-schemes, let (ϕ′, [ψ′]) be in
Mr
K(S′) and define ϕ := π∗ϕ′. Then the following hold:

(i) There exists a morphism π̃ : S(ϕ[n])→ S′(ϕ′[n]) extending π.

(ii) Given any two extensions π̃i : S(ϕ[n])→ S′(ϕ′[n]), i = 1, 2, of π, one has
π̃∗1 [ψ′] = π̃∗2 [ψ′] and this K-equivalence class is stable under GS,ϕ.

Based on the above lemma, one defines in the situation and with the notation
of the lemma: π∗[ψ] := π̃∗[ψ′].

Proof: Suppose first that R and R′ are affine and connected, so that we have
S = SpecR, S′ = SpecR′, S(ϕ[n]) = Spec R̃ and S′(ϕ′[n]) = Spec R̃′ for suitable
rings R,R′, R̃, R̃′. Suppose R′ is chosen in such a way that the bundle underlying
ϕ′ is trivial. This implies that the equations ϕ′a(z) = 0, a ∈ n, for the n-torsion
points of ϕ′ are equations in R′[z], and R̃′ is obtained by adjoining a complete
set of solutions {x′i} of these equations to R′. The same set of equations (after
applying R′ → R) has a complete set of solutions {xi} in R̃. By an inductive
procedure and possibly relabelling the xi, one obtains a morphism π̃ : R̃′ → R̃
which sends x′i 7→ xi, and thus (i) is proved for affine S, S′.

Suppose π̃i, i = 1, 2 are lifts of π, where we are still in the affine situation.
Let ψi denote the level n-structure for ϕ on S(ϕ[n]) induced via π̃i from ψ. Since
the π̃i are uniquely determined by the images of the elements {x′i}, which in
turn are zeros of polynomials over R, there exists σ ∈ GS,ϕ such that π̃2 = σπ̃1.
Furthermore by considering the situation after specialization to points x ∈ S

14



and x′ = π(x) ∈ S′, i.e. the case where all rings involved are fields, there
exists σ′ ∈ GS′,ϕ′ such that π̃2 = π̃1σ

′ when considered as a map from x to x′.
However by the definition of R̃′ and R′, the maps π̃i are uniquely determined by
the level structures ψi and vice versa, and two level structures on a connected
base agree, if they agree at one point. Therefore one also has π̃2 = π̃1σ

′.
The second relation between π̃1 and π̃2 shows that ψ1 and ψ2 lie in the same

K-equivalence class, since by our assumption on ψ′ the action of GS′,ϕ′ preserves
the K-equivalence class of ψ′. The first relation now implies that the action of
GS,ϕ preserves the K-equivalence class of ψ.

The general case, where S, S′ are not necessarily affine, is based on a patching
argument. The main point is that a local lift π̃ : Spec R̃ → Spec R̃′ is uniquely
determined by the image ψ = (π̃′)∗ψ′ of ψ′. Thus if on an affine connected
chart one is given maps π̃i, i = 1, 2, that agree on a single point, then they
agree throughout. Details are left to the reader.

The following lemma, whose basic proof is left as an exercise, compares the
above definition with that in the previous subsection and shows its independence
of the chosen conductor:

Lemma 1.10 Suppose that n|n′. Then Mr
Kr

n′
and Mr

n′ are naturally isomor-
phic. In particular the above definition of Mr

K is independent of the chosen
conductor n.

Let us first prove a weak representability result forMr
K:

Proposition 1.11 (relative representability, cf. [31] (4.2)) Suppose S is
a scheme over A(n) and ϕ a Drinfeld-A-module on S. Define Mr

K/(S,ϕ) as the
functor from S-schemes to sets defined by mapping (π : T → S) to

{[ψT ] : [ψT ] is a GT,π∗ϕ-invariant level-K structure on T (π∗ϕ[n])}.

Then Mr
K/(S,ϕ) is representable. If S is connected, then it is represented by(

IndGLr(A/n)
GS,ϕ

S(ϕ[n])
)
/K.

Proof: For the proof it suffices to assume that S is connected, so that also
S(ϕ[n]) is connected and the automorphism group of level n-structures is simply
GLr(A/n). The action of GS,ϕ on level n-structures thus identifies GS,ϕ as a
subgroup of GLr(A/n). We fix a level n-structure ψ0 on S(ϕ[n]). It defines a
level n-structure ψS̃ on S̃ := IndGLr(A/n)

GS,ϕ
S(ϕ[n]). Finally set S′ := S̃/K.

Let now [ψT ] be a level K-structure on T (π∗ϕ[n]) and ψT a representative of
it. We may assume that T is connected. By Lemma 1.9, there exists a morphism
π′ : T (π∗ϕ[n]) → S(ϕ[n]) extending π, so that (π′)∗ψ0 is a level n-structure of
π∗ϕ on T (π∗ϕ[n]). Because T is connected there exists g ∈ GLr(A/n) such
that (π′)∗(ψ0g) = ψT The definition of S̃ now shows that there is a unique
homomorphism π̃ : T (π∗ϕ[n]) → S̃ extending π such that π̃∗ψS̃ = ψT . The
same lemma implies that if we chose a different representative of [ψT ], then one
obtains the morphism gπ̃ for some g ∈ K. Thus there is a unique morphism
π′ : T → S′, independently of the representative of [ψT ] such that the following
diagram commutes:

S̃

��
T (π∗ϕ[n])

π̃ 33hhhhhh

�� S′

��T

π′ 33ggggggggg

π ++XXXXXXXXX

S.
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From the definition of π∗ on level K-structures, it follows that (π′)∗[ψS̃ ] = [ψT ].
Since π′ is the unique such morphism, the proposition is proved.

To formulate a sufficient condition for the representability ofMr
K, we make

the following definition.

Definition 1.12 A compact-open subgroup K of GLr(Â) is called admissible
if the intersection of any GLr(Â)-conjugate of K with GLr(k) ⊂ GLr(Â) is a
(possibly trivial) p-group.

Clearly the above condition is equivalent to the condition that any GLr(Â)-
conjugate of GLr(k) intersects K in a p-group.

Examples are provided by the following simple lemma which is immediate
from the injectivity of GLr(k) ↪→ GLr(kv) for any place v of C.

Lemma 1.13 Suppose there exists a place v such that under the canonical map
GLr(Â) → GLr(kv), the image of K is a p-group. Then K is admissible. In
particular, for n a proper non-zero ideal of A the group K(n) is admissible.

The following result clarifies the importance of admissibility:

Lemma 1.14 If K is admissible, the action of K/K(n) on Mr
n is free.

Proof: The lemma is proved by contradiction, and so we assume that there
exists an A(n)-ring R, an element g ∈ K, and (ϕ, [ψ]) ∈Mr

K(SpecR) such that
g(ϕ, [ψ]) ∼= (ϕ, [ψ]). This means that we can find u ∈ Aut(ϕ) ⊂ R such that
(ϕ,ψḡ) = (uϕu−1, uψ), where ḡ is the image of g in K/K(n). We may clearly
assume that R is an algebraically closed field, which from now on we will do.

From ϕa = uϕau
−1 for all non-constant a ∈ A, it follows that uq

r deg(a)−1 = 1,
so that u is a root of unity of order prime to p. The field k̃ := k[u] ⊂ R defines a
finite extension field of k. One now defines a Drinfeld-module over Ã := A⊗k k′,
which ‘extends’ ϕ, namely

ϕ̃ : Ã→ R{τ} : ã 7→
∑

α̃i(ã)τ i

where ϕ̃(a⊗ui) := ϕ(a)ui, and make R into an Ã-module via the map α̃0 which
extends the given ιR. Because k is the constant field of A, the map ϕ̃ is injective.

Let r̃ be the rank of ϕ̃ so that r = r̃s with s = [k̃ : k]. The module
ϕ[n] = ϕ̃[nÃ] is free over Ã/nÃ ∼= (A/n)⊗k k̃ of rank r̃, because ϕ̃ is injective. If
D denotes the companion matrix of u over Ms(k), say with respect to the basis
1, u, . . . , us−1 of k̃ over k, then it follows that u acts on ϕ[n] through the matrix

D̃ :=


D 0 . . . 0
0 D . . . 0
. . . . . . . . . . . .
0 0 . . . D

 ∈ GLr(k) ⊂ GLr(A/n).

Because uψ = ψg, we have g′D̃ ∈ g′gK(n) for some g′ ∈ GLr(Af ), and hence
D̃ ∈ g′Kg′−1. Since K is admissible, the order of D̃ must be a p-power, and
therefore the order of u, which is given by D̃ (mod K) must be a p-power as
well. Thus the equation uq

r−1 = 1 implies u = 1, as asserted.
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Theorem 1.15 If K is admissible of conductor n, then Mr
K is representable

over SpecA(n) by an affine A(n)-scheme Mr
K. The structure morphism grK :

Mr
K → SpecA(n) is smooth of relative dimension r− 1. The induced morphism

Mr
K(n) →Mr

K

is a Galois cover with Galois group isomorphic to K/K(n).

The corresponding universal Drinfeld-module on Mr
K is denoted by ϕrK. For the

base change of a moduli scheme to an A(n)-ring R we write Mr
K,R, respectively

Mr
n,R. As in the previous subsection, we always suppress the index r if r = 2.

Proof: All assertions in the case K = K(n) are shown in [35], Thms. 1.4.1
and 1.5.1. So let now K be an arbitrary admissible compact-open subgroup of
GLr(Â) of minimal conductor n.

Following [31] (4.7), the moduli problem Mr
K is representable since it is

relatively representable by Proposition 1.11 and rigid by Lemma 1.14. The
construction in the proof of Proposition 1.11 also shows thatMr

K is represented
by M′K := (Mr

n)/(K/K(n)). By [31], Thm. 7.1.3(2), and the previous lemma, it
follows that Mr

n →M′K is an étale K/K(n)-torsor. Because Mr
n is smooth over

SpecA(n) of relative dimension r − 1, by the case already treated, this shows
that M′K has the same properties.
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2 Drinfeld’s compactification of MK.

For lack of a suitably detailed reference, we now reproduce and expand parts of
Drinfeld’s construction of a regular, respectively smooth compactification MK of
the moduli schemes MK, cf. [10], §9. We will need such an elaborate treatment
in Section 12 for our Eichler-Shimura isomorphism for double cusp forms.

The idea of the compactification of the moduli schemes MK is similar to that
in the classical situation for arithmetic modular curves, as for example given in
[31]. There the Tate curve was used to glue in the missing cusps. The analogue
of the Tate curve over functions fields, as realized by Drinfeld, is a family of rank
two Drinfeld modules over a discretely valued field which has potential reduction
of rank one over the special fiber. The infinitesimal neighborhood of this family
along the special fiber serves to describe the degeneration of Drinfeld-modules
at the ‘cusps’.

This method of compactification by considering degenerations is particularly
simple for Drinfeld-modules of rank 2, because over a discretely valued field, any
such has potential reduction of rank at least one. If the rank r of the Drinfeld-
modules is greater than 2, the degeneration can appear in different ways. So a
compactification should contain strata Xs for potential reduction of any rank
s between 1 and r such that Xs is in the closure of Xs+1. In general, no
compactification has been constructed for Mr

K for general r and admissible K.
For some partial results cf. [14], [29], [39]. Therefore from now on, we only
consider the case of rank two.

2.1 A moduli problem

Let (ϕ,L) be a Drinfeld-module on an A-scheme S, so that

ϕ : A→ EndG/S(L).

Define the projective bundle L as the P1-bundle attached to L such that L is
the complement in L of the infinite section. The action of A on L via ϕ induces
an action ϕ̃ : Ar{0} → End(L) by homogenizing the action of (ϕ, 1) on L⊕OS .
(The extendability follows locally on S from the fact that the leading coefficient
of ϕa is a unit.) Furthermore, the addition L×L +−→ L extends uniquely to an
action L × L → L, again denoted by +. In homogeneous local coordinates the
latter map is given as the map

+: A1 × P1 → P1 : (x, (y0 : y1)) 7→ (xy1 + y0 : y1).

It is compatible with the action given by ϕ̃. In particular via ϕ̃ we have a map
of S-points

+: L(S)× L(S)→ L(S) (4)

which respects the action of Ar {0}.

Definition 2.1 ([10], § 9) Fix an admissible subgroup K1 of GL1(Â) and a
non-zero ideal n2 of A, which may be the unit ideal. Define NK1,n2 as the
fibered category of pre-Drinfeld-Tate modules which assigns to an A-scheme S,
the set of triples (ϕ,ψ, λ), where

(i) (ϕ,ψ) is in MK1(S), and

(ii) λ : n−1
2 r {0} → HomS(S,L) is an A r {0}-homomorphism, i.e., for all

a ∈ Ar {0} and m ∈ n−1
2 r {0} one has λ(am) = ϕ̃a(λ(m)).

The following result due to Drinfeld motivates the above definition:
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Proposition 2.2 Suppose V is an A-ring which is a complete discrete valuation
ring with fraction field K. Fix an ideal n such that V (n) contains at least two
elements. Then there are (natural) bijections between the following sets:

(i) Isomorphism classes of Drinfeld-modules ϕ of rank r over K with a level
n-structure and reduction of rank r − 1.

(ii) Isomorphism classes of quadruples (ϕ′, ψ′,m, λ) where

(i) ϕ′ is a Drinfeld module ϕ′ : A→ EndG/V(V) of rank r − 1,

(ii) ψ′ : (n−1/A)r−1 → ϕ′[n] is a level n structure,

(iii) m is a fractional ideal of A and

(iv) λ : n−1m → K is an A-homomorphism such that the image of λ is
discrete in K.

If r = 2, then there is a bijection between any of the above sets and:

(iii) Isomorphism classes of Drinfeld-modules ϕ of rank 2 over K with a level
n structure which do not extend to Spec V.

Define GK := Gal(K̄/K).

Proof: Let K̄ be the separable closure of K and V̄ its ring of integers. In [10],
Prop. 7.2 and 9.1.2, it is shown that for 1 ≤ r′ ≤ r the following sets are in a
natural equivalence:

(i) Isomorphism classes of Drinfeld-modules ϕ of rank r over K with poten-
tially semi-stable reduction of rank r′.

(ii) Isomorphism classes of triples (ϕ′,Λ, λ) where

(a) ϕ′ : A → EndG/V(K) is a rank r′ Drinfeld module with potentially
good reduction,

(b) Λ is a projective A-module of rank r − r′ and

(c) λ : Λ→ K̄∪{∞} is an A-homomorphism such that the image of Λ is
discrete in K̄ and invariant under GK.

The proposition is now a consequence of the following two lemmas.

Lemma 2.3 Let V be an A-ring which is a discrete valuation ring with fraction
field K. Let n be an ideal of A such that V (n) has cardinality at least 2. Suppose
ϕ : A → EndG/K(K) is a Drinfeld module of rank r with a level n-structure
ψ : (n−1/A)r → ϕ[n]. If ϕ has potentially good reduction, then it has good
reduction.

Proof: The proof rests on the analogue of the criterion of Neron-Ogg-Shafare-
vich for Drinfeld modules, cf. [54]. To state it, let v be the valuation on V and
p := {a ∈ A : v(ιV(a)) 6= 0}. For a place v of A, let Tav(ϕ) denote the v-adic
Tate-module of ϕ and ρϕ,v : GK → Aut(Tav(ϕ)) ∼= GLr(Av) the corresponding
Galois representation. Then the criterion says that the following are equivalent:

(i) ϕ has good reduction.

(ii) For all places v of A such that pv is different from p, the representation
ρϕ,v is unramified.
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(iii) For some place v of A such that pv is different from p, the representation
ρϕ,v is unramified.

Let v be a place of A such that pv is different from p and divides n. Such a
v exists as V (n) contains at least two primes. We claim that ρϕ,v is unramified.
By the above criterion this will imply the lemma.

As ϕ has a level n-structure defined over K, the reduction modulo pv of ρϕ,v
is trivial. Hence the image of ρϕ,v is a pro-p group. In particular, the image
of the ramification subgroup IK of GK under ρϕ,v, we write Iρ for it, is a pro-p
group.

As ϕ has potentially good reduction, by [10], Prop. 7.1, there exists a finite
Galois extension K′ of K of ramification index prime to p with the following
property: There exists a Drinfeld-module ϕ′ : A → EndG/V′(V′), where V′ is
the ring of integers of K′, such that ϕ is isomorphic to ϕ′ over K′. By the
above Galois criterion this means that the associated v-adic Galois representa-
tion ρϕ′,v : GK′ → Aut(Tav(ϕ)) is unramified. As this representation is isomor-
phic to the restriction of ρϕ,v to GK′ , the group Iρ is a quotient of the inertia
subgroup I ′ of Gal(K′/K). As I ′ is finite and of order prime to p, the pro-p
group Iρ must be trivial which proves that ρϕ,v is unramified as asserted.

Lemma 2.4 Let m be a fractional ideal of A and λ : n−1m → P1(K̄) be an
A r {0}-homomorphism such that Imλ is discrete in K̄ and invariant under
GK. Suppose further that the image of λ carries a level n-structure, defined over
K, i.e., that there is a GK-equivariant isomorphism n−1 Imλ/ Imλ

∼=−→ n−1/A,
where n−1/A is a trivial Galois module. Then Imλ ⊂ P1(K).

Proof: The existence of the level n-structure implies that the image of GK in
Aut(n−1m) ∼= GL1(A) is a p-group, because its reduction modulo n is trivial.
But GL1(A) ∼= k∗ is of order prime to p, and hence the image is trivial.

Theorem 2.5 Suppose K1 ⊂ Â∗ is admissible open and n2 is an ideal of A. The
fibered category NK1,n2 is representable over SpecA(n1), where n1 is the minimal
conductor of K1. If V (n1) contains at least two elements, it is representable over
SpecA.

We write NK1,n2 for the corresponding scheme. In the case K1 = K1
n1

, we
abbreviate Nn1,n2 := NK1,n2 .

Proof: Suppose first that K1 is contained in K1
n′ for some n′ which contains at

least two different primes. This implies that the line bundle L in the universal
family of M1

K1
is trivial. Therefore L is isomorphic to P1 ×M1

K1
, and so if

n2 = (b) is principal for some b ∈ A, then NK1,n2 is represented by P1 ×M1
K1

.
Let R denote the coordinate ring of the affine scheme M1

K1
, and write P1

R for
P1×SpecR. Then the universal object is the triple (ϕ,ψ, λ) ∈ NK1,n2(P1

R) given
by

ϕ = ϕ1
n1

: A −→ R{τ}
∼=−→ Γ(P1

R,OP1
R
){τ} ∼= EndG/P1

R
(Ga,P1

R
)

a 7→ ϕa :=
deg(a)∑
i=0

αi(a)τ i,

ψ = ψ1
n1

: (n−1
1 /A)

∼=−→ ϕ[n1] ⊂ R
∼=−→ Γ(P1

R,OP1
R
),
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and λ is uniquely defined by mapping the generator b−1 of n−1
2 to the first

projection

pr1∈Hom(P1×SpecR,P1) ∼= Hom(MK1,n2 ,P1) ∼= HomMK1,n2
(MK1,n2 ,P1

MK1,n2
).

The images of the other elements of n−1
2 r {0} are uniquely determined by the

action of Ar {0} via ϕ̃.
For general pairs (K1, n2) we proceed as in the proof of Theorem 1.15, and

apply [31], Thm. 7.1.3, and the following proposition.

To formulate Proposition 2.6 below, we define for any ring R the group

B(R) :=
{(

a b
c d

)
∈ GL2(R) : c = 0, d = 1

}
∼= R∗ nR,

and for an open subgroup K of GL2(Â) define VK as the intersection K∩B(Af ).
We abbreviate Vn = VK(n). There is an action of γ =

(
a b
0 1

)
∈ B(Â) on

(ϕ,ψ, λ) ∈ NK1,n2 , defined by

γ(ϕ,ψ, λ) = (aϕ, aψ, λ+ ψ(b · )),

cf. also page 24.

Proposition 2.6 Suppose K1 ⊂ Â∗ is admissible open and let K′1 be an open
subgroup of K1. Suppose further that n′2 ⊂ n2 are non-zero ideals of A. Define
n to be the largest ideal such that Vn ⊂ K′1 n (n′2Â). Then NK′1,n′2 is Galois over
NK1,n2 over SpecA(n) with Galois group G = K1/K′1 n n2/n

′
2 which acts freely.

Furthermore, if n′ denotes the ideal generated by all the prime divisors of
the minimal conductor of K1, then NK′1,n′2/G ∼= NK1,n2 over SpecA(n′).

Proof: Each of the groups Vn, K′1 n(n′2Â), K1 n(n2Â) is normal in B(Â). This
shows that G is well-defined, and that it suffices to prove the lemma in the case
K′1 n (n′2Â) = Vn, i.e., from now one we write K′1 = K1

n and n′2 = n.
Consider the following inclusions of normal subgroups:

Vn E K1
n n (n2Â) E K1 n (n2Â).

By Theorem 1.15, the second inclusion clearly corresponds to a Galois cover
over SpecA(n). On the other hand the action of (K′1 n Â)/Vn ⊃ (K′1 n n2Â)/Vn

is fixed point free on Nn,n, because

(ϕ,ψ, λ) != γ(ϕ,ψ, λ) = (aϕ, aψ, λ+ ψ(b · ))

implies a− 1 ∈ nÂ and b ∈ nÂ. The freeness of the action of (K′1 n Â)/Vn also
easily implies the second assertion of the Proposition.

Definition 2.7 Define the affine scheme N∞K1,n2
as the subscheme λ = ∞ of

NK1,n2 , define N̂K1,n2 as the completion of the affine scheme NK1,n2 (as a
scheme) along N∞K1,n2

, and define ÑK1,n2 as the complement of N∞K1,n2
in N̂K1,n2 .

If K1 = K1
n1

for some proper non-zero ideal n1 of A, we also write n1 instead
of K1 in the notation introduced above.

The definitions of N̂K1,n2 , ÑK1,n2 and N∞K1,n2
in terms of NK1,n2 directly

imply the following result.

Proposition 2.8 For any n2 and admissible K1, the assertions of Proposi-
tion 2.6 hold for N̂K1,n2 , ÑK1,n2 , N∞K1,n2

in place of NK1,n2 .
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2.2 The Drinfeld-Tate curve

The scheme NK1,n2 does not carry a Drinfeld-A-module of rank 2 along the
generic point of P1 in any natural way. However its completion ÑK1,n2 does so.
The main purpose of this subsection is to explicitly construct the corresponding
Drinfeld-module of rank 2 at least for K1 = K1

n1
and n1 principal, following the

ideas of Proposition 2.2 and [10], § 7. We will assume that K1 = K1
n1

for some
principal non-zero ideal n1 = (b) of A, as the general case can be obtained from
this by Galois descent, cf. Proposition 2.6.

The scheme N̂K1,n2 is the analogue of the Tate curve with level n-structure,
n ∈ N, on Z[1/6][[q−1/n]] where the first component of the level n-structure is
a fixed choice Z/(n) ∼= {x ∈ Z̄ : xn = 1}. We call N̂K1,n2 the Drinfeld-Tate
module for (K1, n2). In the following we will assume that either V (n1) contains
at least two elements, or that we work over SpecA(n1).

We use the notation from the proof of Theorem 2.5. In particular, R is the
coordinate ring of M1

K1
and (ϕ,ψ, λ) is the universal object in Nn1,n2(P1

R). Thus
N̂n1,n2

∼= SpecR[[1/t]], and we denote by (ϕ̂, ψ̂, λ̂) the pullback of (ϕ,ψ, λ) along
the completion map. Thus we have

ϕ̂ = ϕ1
n1

: A −→ R{τ} −→ R[[1/t]]{τ} ∼= EndG/ SpecR[[1/t]](Ga,SpecR[[1/t]])

a 7→ ϕ̂a :=
deg(a)∑
i=0

αi(a)τ i,

ψ̂ : (n−1
1 /A)

∼=−→ ϕ[n1] ⊂ R ⊂ R[[1/t]].

Finally λ̂, which arises from the projection pr1 : P1×SpecR→ P1 onto the first
factor by completing the first scheme at ∞, is given by mapping b−1 to

(1 : 1/t) ∈ P1(SpecR[[1/t]]) ∼= HomSpecR[[1/t]](SpecR[[1/t]],P1
SpecR[[1/t]]).

In particular, for a ∈ Ar {0} one has

λ̂(ab−1) = (ϕa(t) : 1) =
(
1 : t−q

deg a 1∑
i αi(a)t−q

deg a+qi

)
.

The quotient ring Q(R) is a product of fields, and we denote by K the
product of the algebraic closures of these fields. To see that Ñn1,n2 carries a
naturally defined Drinfeld-module of rank 2, we will define an exponential map
eλ from R((1/t)) := R[[1/t]][t] to itself: We denote by λ̌ the map

λ̌ : (b−1) −→ R((1/t)) : ab−1 7→ ϕa(t),

i.e., λ̌ is the first coordinate of λ̂ if the second coordinate is normalized to 1.
Observe that

1/λ̌(ab−1) = αdeg(a)(a)−1 · t−q
deg(a)

va ∈ R((1/t))∗, (5)

for some unit va ∈ 1+1/tR[[1/t]], and we have αdeg(a)(a)−1 ∈ R∗. This implies
that the following expression defines a convergent product in R[[1/t]][[z]]:

eλ(z) := z
∏

a∈Ar{0}

(
1− z

λ(a)

)
.

Let z be in a finite extension R′ of R((1/t)). Then all but finitely many terms
in the product expansion of eλ(z) are one-units in R′. In particular for any such
R′ the map z 7→ eλ(z) : R′ → R′ defines a k-linear morphism.

22



Proposition 2.9 There exists a unique Drinfeld-module ϕ′ : A→ R((1/t)){τ}
of rank 2 such that for all a ∈ A the following diagram commutes:

0 // λ̌(A) //

ϕa

��

R((1/t))
eλ //

ϕa

��

R((1/t))

ϕ′a

��
0 // λ̌(A) // R((1/t))

eλ // R((1/t)).

(6)

Proof: Note first that R is regular and hence reduced because it is the co-
ordinate ring of the moduli space of rank 1 Drinfeld modules with a level K1-
structure. Therefore to prove uniqueness of ϕ′, it suffices to show uniqueness at
all fibers with respect to R, i.e. over all rings R/m((1/t)) where m ∈ Max(R).
Passing to the algebraic closure of R/m((1/t)), the map eλ becomes surjective,
and hence uniqueness is clear.

For the existence, we define ϕ′a by the standard formula of [10], proof of
Prop. 3.1: Identify a with ιR(a) and let Sa be a set of representatives of {x ∈
K r λ̌(A) : ϕ′a(x) ∈ λ̌(A)} modulo λ̌(A). Define

ϕ′a(z) := az
∏
c∈Sa

(
1− z

eλ(c)

)
= z

a∏
c∈Sa

eλ(c)

∏
c∈Sa

(
eλ(c)− z

)
.

By the following lemma and the invariance of the given expression under the
absolute Galois group of Q(R((1/t))), this expression lies indeed in R((1/t)){τ}.
The proof that

ϕ′ : A→ R((1/t)){τ} : a 7→ ϕ′a

does define the structure of a Drinfeld-module of rank 2 on R((1/t)) is standard
and left to the reader.

Lemma 2.10 One has ∏
c∈Sa

eλ(c) = uaa

for some unit ua ∈ R((1/t))∗, and the product on the left is independent of the
chosen set of representatives.

Proof: Let S̃a be a set of representatives of

{x ∈ K : ϕa(x) ∈ λ̌(A)} modulo λ̌(A) + ϕ[a],

which contains 0, i.e. such that the class λ̌(A)+ϕ[a] is represented by 0. We will
assume without loss of generality that Sa = (S̃a + ϕ[a]) r {0}. Let Ra be a set
of representatives of (a−1)/A which contains 0, and note that

∏
c∈ϕ[a](x− c) =

ϕa(c) for x an indeterminate and ϕa(λ̌(β)) = λ̌(aβ) for β ∈ n−1
2 r {0}. Then∏

c∈Sa

eλ(c) =
∏

c∈(S̃a+ϕ[a])r{0}

(
c

∏
α∈λ̌(A)r{0}

(1− c

α
)
)

=
ϕa(x)
x

∣∣∣∣
x=0

∏
c∈S̃ar{0}

ϕa(c)
∏

α∈λ̌(A)r{0}

∏
c∈S̃a

ϕa(α− c)
α|a|

2
∞

= a
∏

d∈Rar{0}

λ̌(d)
∏

β∈Ar{0}

∏
d∈Ra

λ̌(aβ − d)
λ̌(β)|a|2∞

By formula (5) the second factor of the last expression is a unit in R((1/t)).
Furthermore the numerators and denominators of the third factor are units in
R((1/t)) and their quotient is a 1-unit for all but finitely many β. Hence the
assertion is shown.
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2.3 The infinitesimal neighborhood of all cusps

In the previous subsection we explained how to construct what should be the
infinitesimal neighborhood of a single cusp. The point of this subsection is to
show how to give an adelic description of the infinitesimal neighborhood of the
scheme of all cusps of MK for a given admissible K.

By Proposition 2.6, the Nn,n form naturally an inverse limit system and one
defines N as lim←−n Nn,n, and analogously N̂ and Ñ — one may take the inverse
limit over all principal ideals n. The scheme N represents triples consisting of
a rank 1 Drinfeld-module ϕ on a scheme S, a compatible system of level n-
structures of ϕ for all non-zero ideals n, or equivalently an A-homomorphism
ψ : K/A→ L(S), and a compatible system of Ar{0}-morphisms n−1r{0} → L,
or equivalently an A r {0}-homomorphism λ : K r {0} → L. Define N to be
the corresponding moduli problem. Note that the coordinate ring of the affine
scheme N̂ is simply the integral closure of R[[1/t]] in the infinite Galois extension
of Q(R((1/t))) generated by all torsion points of ϕ′.

There is a natural action of B(Af ) on N , i.e., on triples (ϕ,ψ, λ) as above,
cf. [10], § 9. To describe it, we first recall the action of GLr(Af ) on Mr =
lim←−n Mr

n, i.e. the fibered category of pairs (ϕ̃, ψ̃) consisting of a rank r Drinfeld-
module on a scheme S and an A-homomorphism (K/A)r → L(S), [10], § 5:

First consider g ∈ GLr(Af ) ∩Mr(Â). Then g induces an endomorphism of
(K/A)r with finite kernel H. By [10], Prop. 4.4, there exists a unique isogeny
ξ̃ of ϕ̃ to a rank r Drinfeld-module ϕ̃′ whose kernel subgroup scheme is the
Cartier divisor

∑
α∈H ψ̃(α). Define g(ϕ̃, ψ̃) to be the pair (ϕ̃′, ψ̃′) where ψ̃′ is

the unique A-homomorphism (K/A)r → L(S) such that the following diagram
commutes

(K/A)r
ψ̃ //

g

��

L(S)

ξ̃

��
(K/A)r

ψ̃′ // L(S)

where the A-action on the top L(S) is via ϕ̃ and on the bottom one via ϕ̃′. If
g is a scalar matrix for some scalar a ∈ A r {0}, then the action of g induces
the identity on Mr. (One simply uses the isogeny ξ̃ := ϕ̃a from ϕ̃ to itself.) As
GLr(Af ) = K∗(GLr(Af ) ∩M2(Â)) one can extend the action defined above to
all of GLr(Af ) in such a way that K∗ acts trivially.

Now one defines the following action of B(Af ), cf. [10], § 9: For b ∈ Af
define

bψ : K −→ Af b·−→ Af −→ Af/Â ∼= K/A
ψ−→ L(S).

Recall that we have an addition + : L(S) × L(S) −→ L(S). Thus if for g =(
a b
0 1

)
∈ B(Af ) we set

g(ϕ,ψ, λ) := (aϕ, aψ, bψ + λ),

this defines a homomorphism B(Af )→ Aut(N), and it induces actions of B(Af )
on N̂ and Ñ. By Proposition 2.6 the scheme Nn,n is the quotient of N by Vn.
By Proposition 2.8, the analogous results hold for N̂ and Ñ.

Define M̂ as the scheme IndGL2(Af )/K∗

B(Af )
N̂. By this one means the following:

The scheme N̂ is the affine scheme SpecR∞ where R∞ = lim−→Rn and the Rn

are the coordinate rings N̂n,n. The action of B(Af ) is an action on the ring
R∞. One now considers the set of locally constant functions from GL2(Af )/K∗
to R∞ which are B(Af )-equivariant and are non-zero on only finitely many
B(Af )-orbits. (Note that GL2(Af )/(K∗B(Af )) is infinite.) The resulting non-
unital ring may also be described as

∐
GL2(Af )/(K∗B(Af ))R∞. The spectrum of
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this latter ring together with the action of GL2(Af )/K∗ is the scheme defined
above.

One has the usual formula for the restriction of an induced representation.
Say H ′,H are subgroups of group G and H acts on the affine scheme S from
the right. Then

ResH
′

G IndGH S ∼=
∐

s∈H\G/H′

IndH
′

H′
s
S

where H ′s := H ′ ∩ s−1Hs and an element h ∈ H ′s acts on S as shs−1 ∈ H.
For an open subgroup K of GL2(Â) one defines M̂K as M̂/K. Analogously

one defines M̃K and M∞K , and if K = K(n) we simply write the subscript n

instead of K(n). Noting that K∗ acts trivially on N̂, the above yields the
following explicit expression for M̂K:

Lemma 2.11

M̂K =
∐

s∈K∗B(Af )\GL2(Af )/K

N̂/(B(Af ) ∩ s−1Ks).

If K = K(n), a set of double coset representatives s given as follows: Choose
representatives xν ∈ (Af )∗ of Cl(A) ∼= (Af )∗/Â∗ and let s1,ν be the diagonal
matrix with diagonal entries (xν , xν). Furthermore choose elements s2,µ in
GL2(Â) which form a set of representatives of k∗\GL2(A/n)/B(A/n). Then the
elements s = s1,νs2,µ form a set of representatives for K∗B(Af )\GL2(Af )/K.
Because the s1,ν are in the center of GL2(Af ) and because K(n) is normal in
GL2(Â), one concludes that independently of s one has

B(Af ) ∩ s−1K(n)s = B(Af ) ∩ K(n) = Vn.

For arbitrary K, the schemes N̂/(B(Af ) ∩ s−1Ks) are called the formal neigh-
borhoods of the cusps of MK. Thus we have shown the following.

Proposition 2.12 For any K and any K(n) contained in it, one may choose
a set of coset representatives of K∗B(Af )\GL2(Af )/K which normalize K(n)
and GL2(Â). Furthermore, the formal neighborhoods of all cusps of Mn are
isomorphic to Nn,n.

Remark 2.13 The above proposition needs to be compared with the descrip-
tion of Drinfeld-modules with a level structure, and stable but bad reduction
given in Proposition 2.2 (ii). There we needed four parameters to describe such
an object, namely in addition to (ϕ,ψ, λ), we also had an ideal m of A. We
claim that the fibered category of such triples for a fixed m is isomorphic to
Nn,n, as asserted by the above proposition: To see this choose ν such that the
kernel of xν : K/A → K/A is of the form am−1/A for some a ∈ K r m. Then
multiplication by s1,ν is an isomorphism between the fibered category for m
and Nn,n.

2.4 Gluing the cusps into MK

As the scheme M̃n naturally carries a rank 2 Drinfeld-A-module with a level
n-structure, there is a canonical map M̃n →Mn. (For a modular interpretation
due to Drinfeld cf. Proposition 2.2.) This map is used in [10], § 9, to construct
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a commutative diagram

Mn

��

M̃n
oo

��

� � // M̂n

��

M∞n

��

? _oo

A1
A SpecA((1/t))oo � � // SpecA[[1/t]] SpecA,? _oo

which depends on the choice of a non-constant a ∈ A, and where SpecA[[1/t]] is
the infinitesimal thickening of ∞ ∈ P1

A, all squares are cartesian and all vertical
maps are finite flat. To describe the left vertical map in terms of moduli, one
assumes, without loss of generality, that all Drinfeld-modules ϕ ∈ Mn(S) are
given in standard form

ϕ : A 7→ S{τ} : b 7→ ϕb =
2 deg(b)∑
i=0

αi(b)τ i.

Then the left vertical map is defined by

ϕ 7→
(
ξϕ : A[t]→ S : b 7→ ιS(b), t 7→ α

deg(a)−1
deg(a) (a)/α2 deg(a)(a)

)
.

Details of this construction can be found in the recent work [36].
Clearly the bottom sequence of the above diagram can be glued to yield P1

A

and the diagram can be used to glue the cusps into Mn and hence to construct
a finite scheme M̂n together with a finite flat morphism to P1

A.

Theorem 2.14 Suppose that V (n) contains at least two primes. Then there
exists a unique regular A-scheme Mn, proper over SpecA, which contains the
A-scheme Mn as an open dense subscheme such that:

(i) Mn r Mn → SpecA is finite,

(ii) The completion of the scheme Mn along Mn r Mn is canonically isomor-
phic to M̂n.

(iii) Mn → SpecA is smooth over SpecA(n) of relative dimension one.

Furthermore for n′ ⊂ n, the covering map Mn′ → Mn extends to a finite flat
map Mn′ → Mn with an action of K(n)/K(n′), which is ramified possibly over
V (n′) and ∞.

Let K be any admissible open subgroup of GL2(Â) with minimal conductor
n. Then, there exists a canonical smooth compactification MK of MK over
SpecA(n). It is obtained as the quotient of Mn by K/K(n) and has properties
analogous to (i) and (ii) over SpecA(n).

The A-morphism MK → SpecA(n) is denoted by ḡK, and similarly ḡn : Mn →
SpecA(n). The open immersion MK →MK is denoted by jK.

Proof: All the statements concerning Mn stem from [10], Prop. 9.3. So it
remains to prove the assertions on MK. Let G := K/K(n). By Theorem 1.15,
we know that MK ∼= Mn/G is smooth over SpecA(n). As the gluing is easily
seen to be compatible with the action of K/K(n), and as M̂n/G ∼= M̂K, it
remains to show that M̂K is formally smooth over SpecA(n). For this, we use
its explicit description given in Lemma 2.11.

Thus, we need to consider the action of s−1Ks∩B(Af ) on N, or equivalently,
making use of n, the action of (s−1Ks∩B(Af ))/Vn on Nn,n. By Proposition 2.12,
we may choose a set of double coset representatives s such that each s normalizes
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GL2(Â). Thus it suffices to show that for any admissible K, the action of
(K ∩B(Af ))/Vn = VK/Vn on Nn,n is free over SpecA(n).

Define K1 ⊂ Â∗ to be the quotient VK(1 n Af )/(1 n Af ). Then VK ⊂
K1 n Â, and it will suffice to show that the action of (K1 n Â)/Vn is free. By
Proposition 2.6 it is enough to show that K1 is admissible.

Assume that K1 is not admissible. As K1 is abelian, there must exist an
element a ∈ (k∗ r {1}) ∩ K1. Thus

(
a 0
0 1

)
will be in K(1 n Â), i.e. K will

contain an element of the form
(
a b
0 1

)
for some b ∈ Â. If we conjugate this

element with t :=
(

1 b
1−a

0 1

)
, we obtain

I 6=
(
a 0
0 1

)
∈ tKt−1 ∩GL2(k)

contradicting the admissibility of K.
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3 Drinfeld’s upper half plane

For the explicit description of the analytic moduli space for Drinfeld modules
of rank 2 with some level structure to be given in the following section, we will
review some necessary background in this section on Drinfeld’s upper half plane
Ω and its quotient by arithmetic subgroups. We first recall the description of the
C∞-valued points of Ω as a subset of P1(C∞) together with its reduction map to
the Bruhat-Tits tree T . Then we describe its structure as a rigid analytic space
over K∞. Finally we look at quotients Γ\Ω and their canonical compactification
for arithmetic subgroups Γ of GL2(K). For an introduction to rigid analytic
spaces, we refer to [5] and [12].

Two main objectives are, first, to give a self-contained exposition of the
affinoid cover of Γ\Ω that arises from a natural cover of Γ\T , and, second, to
provide a useful affinoid cover for the canonical compactification of Γ\Ω.

A word on notation. We will use gothic letters for three different purposes.
M?

? and N?
? were (and will be) used for algebraic moduli space and moduli spaces

in general. Letters U, X, Y, Z will be used for rigid spaces. Finally, we also
gothic letter do denote Čech covers. We hope that no confusion will arise.

3.1 The reduction map for Ω(C∞)

As a set of points, we define Ω(C∞) := P1(C∞) r P1(K∞). This space has a
similar meaning for the uniformization of certain rigid curves, as the complex
upper half plane for compact Riemann surfaces of genus g > 1.

Following the treatment in [8], which is based on [10], we will now describe
the reduction map ρ of Ω(C∞). This will be useful when describing the rigid
structure of Ω and its quotients. To describe ρ we will introduce the Bruhat-Tits
tree T associated to rank 2 lattices of A∞ and the set of norms on the vector
space V∞ := K2

∞ up to dilatations. The set {f0, f1} will denote the standard
basis of V∞.

Definition 3.1 An A∞-lattice M of V∞ is a free A∞ submodule of V∞ of
rank 2.

Two A∞-lattices M,M ′ of V∞ are equivalent, if there exists some a ∈ K∗∞
such that aM = M ′. An equivalence class is denoted by [M ].

Definition 3.2 (The Bruhat-Tits tree T ) The set T0 of vertices of T is the
set of equivalence classes [M ] of A∞-lattices of V∞.

The set T1 of edges of T is the set of pairs {v, v′} of vertices which satisfy the
following property: There exist lattices M ⊂M ′ of index q∞ such that v = [M ]
and v′ = [M ′].

The elements of T0 ∪ T1 are called the simplices of T .

The above definition of T1 does not involve any kind of orientation on T , because
if M ⊂M ′ has index q∞, then so does M ′ ⊂ π−1

∞ M and [M ] = [π−1
∞ M ].

It is simple to see that T is a connected tree and that there are q∞+1 edges
originating from every vertex of T , cf. [48], II.1.1.

By a path, we mean a sequence of distinct vertices v0, . . . , vn such that for
all i, {vi, vi+1} is an edge.

Definition 3.3 By T o, we define the oriented graph associated to T : It has
the same vertices as T . For any edge ē connecting vertices v, v′, the graph T o
has an oriented edge vv′

→
from v to v′ and an oriented edge v′v

→
in the opposite

direction.
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We say that two oriented edges e, e′ of T o have the same orientation, if
there exists a path v0, . . . , vn in T such that either e = v0v1

→
and e′ = vn−1vn

→
or

e′ = v0v1
→

and e = vn−1vn
→

.
For an oriented edge e, define t(e) ∈ T0 as the target of e. If e is an oriented

edge, then by −e, we define the oriented edge with the opposite orientation and
the same underlying (non-oriented) edge.

An orientation of T is a choice of an oriented edge of T o for each edge of T ,
i.e., a splitting of the canonical surjection T o1 −−→→ T1.

To distinguish notationally between edges and oriented edges, the former are
overlined, and the latter ones are not.

The geometric realization |T | of the graph T is defined as follows: To each
edge ē = {v, v′} we assign an interval

iē := {(αv, αv′) : αv + αv′ = 1, 0 ≤ αv, αv′} ∼= [0, 1].

One then defines |T | :=
∐
ē∈T1 iē/ ∼, where ∼ is the equivalence relation that

identifies for each v ∈ T0 the points (αv = 1, αv′ = 0) such that {v, v′} ∈ T1.

Definition 3.4 A point on iē is called rational if its coordinates αv and αv′
are rational. A point t ∈ |T | is called rational, if t is a rational point on some
interval iē.

As T is a tree, it is quite obvious how to define a canonical distance function
d(x, x′) for x, x′ ∈ |T | such that the distance between neighboring vertices is
one. This makes |T | into a metric space.

We now come to the definition of norms on V∞ modulo dilatations. This
provides a natural link between Ω(C∞) and |T |.

Definition 3.5 A norm on V∞ is a map ν : V∞ → R≥0 such that for all
x, y ∈ V∞ and α ∈ K∞ the following hold: a) ν(x + y) ≤ max{ν(x), ν(y)}, b)
ν(αx) = |α|∞ν(x), and c) ν(x) = 0 if and only if x = 0.

A norm ν′ is called a dilatation of a norm ν, if there exists r ∈ R>0 such
that ν′ = rν. The dilatation class of ν is denoted by [ν], the set of all such
classes by N(V∞).

Given dilatation classes [ν], [ν′], we define their distance as

δ([ν], [ν′]) := logq∞ sup
x6=0

ν(x)/ν′(x) + logq∞ sup
x6=0

ν′(x)/ν(x).

Note that this definition is independent of the chosen representatives and one
can check that N(V∞) together with δ is a metric topological space.

Next we describe natural maps which complete the diagram

Ω(C∞)
ρ̃ // N(V∞) |T |.θoo (7)

Given (z0 : z1) ∈ Ω(C∞), we define the norm ν(z0,z1) by

ν(z0,z1)(α0f0 + α1f1) := |α0z0 + α1z1|C∞ .

Based on the fact that (z0 : z1) /∈ P1(K∞), it is simple to see that this defines
a norm. If one chooses a different representative of the point

(
z0
z1

)
∈ P1(C∞),

one obtains a dilatation of ν(z0,z1). Hence we obtain a well-defined map ρ̃ as
described above. Because | . |C∞ takes values in qQ

∞, the dilatation classes in the
image of ρ̃ have a representative which takes its values in qQ

∞.
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We now describe θ: Given a lattice M , we define

νM (x) := inf{|α|∞ : α ∈ K∞, x ∈ αM}.

It is simple to verify that this defines a norm. Given lattices M ⊂M ′ of index
q∞ and αM , αM ′ ∈ R≥0 with αM + αM ′ = 1, we define the norm

νM,αM ,M ′,αM′ (x) := sup{νM ′(x), q−αM′
∞ νM (x)}.

These assignments induce maps from T0 to N(V∞) and similarly θ : |T | −→
N(V∞). The following can be found in [8], Ch. 3:

Theorem 3.6 (Drinfeld) The map θ is an isomorphism of metric spaces. If
one defines

ρ := ρ̃θ−1 : Ω(C∞)→ |T |,
then this map surjects onto the rational points of |T |.

The map ρ is called the reduction map of Ω(C∞).

3.2 The action of GL2(K∞)

Our next goal is to describe an action of GL2(K∞) on the objects in diagram
(7) such that the morphisms θ and ρ̃ are GL2(K∞)-equivariant.

We fix γ =
(
a b
c d

)
∈ GL2(K∞). Its action on

(
z0
z1

)
∈ Ω is defined by(

z0
z1

)
7→ γ

(
z0
z1

)
.

Elements of V∞ are considered as row vectors x on which γ acts via x 7→ γ◦x :=
xγ−1. For a norm ν we define

(γν)(x) := ν(xγ),

which is in line with the idea that a norm is a ‘morphism’ from a space on which
we act by GL2(K∞) to a space with a trivial action. Finally, we define an action
of γ on A∞-lattices of V∞ by sending the lattice M to γ◦M := {γ◦m : m ∈M},
which is again an A∞-lattice of V∞. It is simple to verify that this induces an
action of γ on T , T o and |T |.

Proposition 3.7 The above defines left actions of the group GL2(K∞) on
Ω(C∞), N(V∞), T , T o and |T | which factor through PGL2(K∞). With re-
spect to these actions, the maps θ and ρ̃ are GL2(K∞)-equivariant.

Definition 3.8 The standard vertex is v0 := [A∞f0⊕A∞f1]. By v1 we denote
the vertex [π∞A∞f0 ⊕A∞f1]. The standard oriented edge is e0 :=v0v1

→
.

The inverse image of v0 under the reduction map ρ is the set

{z ∈ OC∞ : z (mod mC∞) /∈ k∞}

which is simply the closed unit disk in C∞ with q∞ open discs of radius one
around the points of k∞ removed.

Proposition 3.9 The action of GL2(K∞) is transitive on vertices, as well as
on oriented edges. The stabilizer of the action on v0 is GL2(A∞)K∗∞. The
stabilizer of e0 is K∗∞Γe0 , where

Γe0 :=
{(

a b
c d

)
∈ GL2(A∞) : c ∈ π∞A∞

}
.
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3.3 Ω as a rigid space over K∞

We will now use the reduction map to construct a rigid space Ω whose points
over C∞ are in bijection with Ω(C∞). The set Ω(C∞) is regarded as a subset
of C∞ via the map (z1 : z2) 7→ z1/z2. We first define a Čech cover of |T |.

Definition 3.10 Define Wv0 := {p ∈ |T | : d(p, v0) ≤ 1/3} and

Wē0 := {(v0, α, v1, β) : α ≥ 1/3, β ≥ 1/3, α+ β = 1}.

Furthermore for a general vertex v = γv0 set Wv := γWe0 and for an edge
ē = γē0 set Wē := γWē0 .

The setWv0 is a star around v0 where each of the q∞+1 line segments originating
from v0 has length 1/3, and We0 is a line segment of length 1/3. The definitions
of Wv and We are independent of the chosen γ. The set W := {Wt : t ∈ T } is
a Čech cover of |T | by compact connected subsets of |T |. The next result, cf.
[8], shows how ρ−1(W) gives rise to an affinoid cover of Ω(C∞) which is already
defined over K∞.

Proposition 3.11 For each connected compact subset of T with rational end-
points its preimage under ρ is the set of the C∞-valued points of an affinoid
subset of P1

K∞
.

For t ∈ T , we define Ut(C∞) := ρ−1(Wt). For t = v0 and t = e0, one has the
following explicit description of Ut:

Uv0(C∞) =
{
z ∈ C∞ : |z − β|∞ ≥ q−1/3

∞ for all β ∈ k∞ and |z|∞ ≤ q1/3∞
}
,

Ue0(C∞) =
{
z ∈ C∞ : q1/3∞ ≤ |z|∞ ≤ q2/3∞

}
.

Via the action of GL2(K∞), one can obtain the remaining Ut from Uv0 and Ue0 ,
and it follows from these explicit descriptions that the sets Ut are C∞-valued
points of affinoids defined over K∞. In [12], V.1, the following result due to
Drinfeld is explained.

Proposition 3.12 The cover U := {Ut : t ∈ T } is an admissible affinoid cover
of a rigid analytic space Ω whose set of C∞-valued points is P1(C∞) r P1(K∞).

For any affinoid space X, the ring of holomorphic sections on X is denoted by
OX . In particular, it is easy to see that all rational functions with poles in
P(K∞) lie in OΩ.

3.4 Arithmetic subgroups of GL2(K)

For a non-zero ideal n of A, let Γ(n) denote the standard congruence subgroup
of GL2(A) of level n, i.e., the subgroup of all matrices which are the identity
modulo n. Following [15], we make the following definition.

Definition 3.13 A subgroup Γ of GL2(K) is called an arithmetic subgroup if
there exists an ideal n of A such that Γ contains Γ(n) and such that this inclusion
is of finite index.

The following gives an alternative characterization of such subgroups, which
is used in [15], V.2, as their definition:
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Proposition 3.14 A subgroup Γ of GL2(K) is an arithmetic subgroup, if and
only if there exists a projective A-submodule Λ of K2 of rank 2 and an ideal n
of A such that

AutA(Λ) ⊃ Γ ⊃ AutA(Λ, n) := {γ ∈ AutA(Λ) : γ ≡ id (mod nΛ)},

where AutA(Λ) is the set of A-linear automorphisms of Λ.

Proof: Let first Γ be an arithmetic subgroup of GL2(K) which contains the
group Γ(n′) as a subgroup of finite index for some non-zero ideal n′ of A. We
will construct Λ and n with the desired properties: We define Λ :=

⋂
γ∈Γ γA

2.
Because A2 = γA2 for all γ ∈ Γ(n′), this is really a finite intersection of torsion
free A-modules of rank 2 inside K2. It follows easily that Λ must be a projective
A-module of rank 2 for which Γ ⊂ AutA(Λ).

As Λ is of rank 2, we can choose a non-zero ideal n ⊂ n′ of A such that
nA2 ⊂ Λ. Hence

nΛ ⊂ nA2 ⊂ Λ ⊂ A2

and it follows that AutA(Λ, n2) ⊂ Γ(n′) ⊂ Γ.
For the other direction, suppose we are given n and Λ. We may clearly as-

sume that Λ ⊂ A2. Choose n′ ⊂ n such that n′A2 ⊂ Λ. Then Γ ⊃ AutA(Λ, n) ⊃
Γ(n2), and it follows readily that Γ is an arithmetic subgroup of GL2(K).

As the set of A-lattices Λ ⊂ K2 of rank 2 is invariant under conjugation by
elements in GL2(K), the following result is clear.

Corollary 3.15 If Γ is an arithmetic subgroup of GL2(K), then so is γΓγ−1

for any γ ∈ GL2(K).

Proposition 3.16 Suppose that Γ is an arithmetic subgroup of GL2(K). Then
det(Γ) ⊂ k∗ ⊂ K∗ and furthermore, the action of Γ on T is orientation pre-
serving, i.e., for any γ ∈ Γ and any vertex v of T , the distance between v and
γ(v) is an even integer.

Proof: Since the index of Γ ⊃ Γ(n) is finite, so is the index of the subgroups
det(Γ) ⊃ det(Γ(n)) = {1} of K∗. But the only finite subgroups of K∗ are
subgroups of k∗. This shows the first assertion. The second follows from [48],
p. 104 f., which says that any Γ which satisfies det Γ ⊂ k∗ is orientation pre-
serving. (The reason behind this is that v∞(det γ) ≡ 0 (mod 2) provided that
det γ ∈ k∗.)

3.5 Quotients of T

Our goal is to describe Γ\Ω and its C∞-valued points. As the reduction map is
crucial for the understanding of this quotient, we first recall some facts about
Γ\|T |.

For t ∈ T , we define its stabilizer in Γ as Γt := {γ ∈ Γ : γ(t) = t}.

Lemma 3.17 For t ∈ T , the group Γt is finite.

Proof: For Γ ⊂ GL2(A), this can be found in [48], II.1. For general Γ, one
uses the fact that Γ and GL2(A) are commensurable.
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By Proposition 3.16, the stabilizer of any edge t acts trivially on its geometric
realization in |T |. On the star-shaped regions Wt, t ∈ T0, the action of Γt fixes
the vertex t but may permute the edges emanating from t.

It is a simple exercise to construct the quotient graph Γ\T and to show that
its geometric realization agrees with the quotient Γ\|T |. Note that Γ\T may
have multiple edges between two vertices. (However no edge may start and end
at the same vertex.) Before we give a useful description of Γ\T , we review the
notion of an end of T .

Definition 3.18 A half line of T is a sequence s := {[Mi]}i∈N0 of vertices of
T such that for each i > 0 the vertices [Mi−1] and [Mi+1] are adjacent to [Mi]
and distinct.

Two half lines s and s′ are said to be equivalent if there exists j, j′ ≥ 0 such
that [Mi+j ] = [M ′i+j′ ] for all i ∈ N0. An end is an equivalence class [s] of a half
line s.

Since T is a tree, any end has a unique representative s which starts at v0.
Using the elementary divisor theorem, one can see that there exists a vector l
in M0 := A∞f0 ⊕ A∞f1 which is unique up to multiplication by an element in
A∗∞ such that s is given by the sequence of lattices Mi := lA∞ + πi∞M0. For
the following proposition see [48], II.1.1.

Because we had defined a left action of γ ∈ GL2(K∞) on the row vector
v ∈ V∞ ∼= K∞

2 by γ ◦ v = vγ−1, we define a left action of γ ∈ GL2(K∞) on
(x1 : x2) ∈ P1(K∞) by viewing (x1 : x2) as a row vector and acting on with γ−1

from the right.

Proposition 3.19 The map which sends the end [s] to the line in P1(K∞)
generated by l induces a GL2(K∞)-equivariant bijection between the ends of T
and P1(K∞).

Definition 3.20 An end is called rational if it corresponds to an element in
P1(K) under the above bijection.

The elements of Γ\P1(K), i.e., the equivalence classes of rational ends mod-
ulo Γ, are called the cusps of Γ\T .

The following theorem describes the structure of Γ\T :

Theorem 3.21 Let Γ be an arithmetic subgroup of GL2(A). Then Γ\T is the
union of a finite connected subgraph Y and subgraphs ∆x for each cusp x ∈
Γ\P1(K) such that the following hold:

(i) Each ∆x is a graph with vertices {vx,i : i ≥ 0} and edges {ēx,i : i > 0}
where the edge ēx,i connects the two vertices vx,i−1 and vx,i. Furthermore,
∆x is represented by a half line s of T whose corresponding end is in the
equivalence class of the cusp x.

(ii) For cusps x 6= x′, the graphs ∆x and ∆x′ are disjoint.

(iii) The subgraphs Y and ∆x have precisely one vertex in common, namely
vx,0.

Note that for a cusp x, the geometric realization of ∆x is isomorphic to R≥0.

Proof: Let Λ be an A-submodule of K2 as in Proposition 3.14, so that Γ ⊂
AutA(Λ). If Λ ∼= A2, then the theorem is given in [48], II.2.3, cf. in particular
Thm. 9.

If Γ = AutA(Λ), but Λ is arbitrary, the asserted result follows by modifying
[48], pp.130–146, as follows: In II.2.1, on defines EL as the vector bundle on C
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which agrees with Λ, when restricted to Spec(A), and has L as the fiber above
∞ (the place P from loc. cit. corresponds to ∞ in our notation). Let FΓ be the
unique (up to isomorphism) line bundle on C which agrees with Λ ∧ Λ, when
restricted to SpecA, and satisfies 0 ≥ degFΓ > −d∞. Then Prop. 5 in II.2.1
asserts a bijection between the vertices of Γ\T and the vector bundles on C
whose determinant is isomorphic to either FΓ or FΓ ⊗ I∞.

II.2.2 remains unchanged. Finally, II.2.3 needs the following changes. Define
F ′c,n := I⊗nP ⊗ F−1

c ⊗ FΓ. II.Prop 9 remains true if one imposes the condition
(n − 1)d∞ > 2g − 2 − 2fc + degFΓ. On page 143 one needs to define m :=
max{2g − 2 + d∞, 3d∞ − 2 − deg FΓ} and nc as the largest integer such that
2fc + ncd∞ ≤ m + degFΓ. Then II.Thm.9 remains valid and the proof of the
above theorem is completed.

The case where Γ is a proper subgroup of AutA(Γ), follows from the remarks
in [48], p. 172.

For later use, we now recall the notion of stable and unstable simplices. It
will be important when we review Teitelbaum’s description of modular forms
and furthermore for defining an affinoid cover of the compactification of Γ\Ω.
All results which we do not prove are from [48], p. 176ff.

Let Γ denote an arithmetic subgroup of GL2(K) which is p′-torsion free.

Definition 3.22 A simplex t ∈ T is called stable (with respect to Γ) if Γt is
trivial. Otherwise it is called unstable.

If an edge is unstable, then the vertices on both ends are unstable. Therefore
the unstable simplices form a subgraph T∞ of T which is a countable disjoint
union of trees. By Lemma 3.23, there exists a map b : T∞ → P1(K) which sends
an unstable simplex t to the unique rational end [s] such that Γt ⊂ Γs. It is
constant on connected components and thus b gives a labeling of the subtrees
of T∞.

The group Γ acts on T∞ and, by Theorem 3.21, the quotient Γ\T∞ is a
finite disjoint union of card(Γ\P1(K)) graphs each of which contains precisely
one cusp of Γ\T . One can also show purely combinatorially that all connected
components of the geometric realization of Γ\T∞ are contractible.

Based on the finiteness of Γt, one can show the following lemma, cf. [48],
II.2.9:

Lemma 3.23 Suppose Γ is p′-torsion free. If Γt is non-trivial, then there exists
a unique rational end [s] whose stabilizer Γs ⊂ Γ contains Γt.

3.6 Quotients of Ω

To obtain Γ\Ω, one first constructs the affinoids Γt\Ut. Their existence as rigid
spaces is guaranteed by the following lemma due to Drinfeld, cf. [5], 6.3.3, Prop.
3. Below we will give an explicit construction of these quotients.

Lemma 3.24 Let B be an affinoid algebra with associated space Spm(B) on
which a finite group G acts. Then the quotient space Spm(B)/G exists and is
given by Spm(BG).

The stabilizers of a non-trivial intersection Wtt′ := Wt ∩Wt′ is given by Γtt′ :=
Γt ∩ Γt′ . If Wtt′ 6= ∅, one of t, t′ is an edge e, the other an adjacent vertex v
and one has Γtt′ = Γe ⊂ Γv. One may therefore glue the affinoids Γt\Ut along
their intersections Γtt′\Utt′ , where Utt′ = Ut ∩Ut′ . Furthermore, one may verify
that the reduction map induces reduction maps Γt\Ut → Γt\Wt which can be
glued.

Let D∗ denote the punctured affinoid unit disc defined over K∞.
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Theorem 3.25 For any arithmetic subgroup Γ, there exists a rigid quotient
space Γ\Ω of Ω by Γ with the usual universal property of a quotient and an
induced reduction map Γ\Ω(C∞)→ |Γ\T |, denoted by ρΓ. The map ρΓ satisfies
the following conditions:

(i) Let t ∈ T1 be an edge with endpoints v, v′ and Et a closed line segment of
it with rational endpoints distinct from v, v′. Then the preimage of Γt\Et
is a closed annulus.

(ii) Let t be in T0 and for a rational number α ∈ (0, 1) define the star St(α)
with center t as {p ∈ |T | : d(p, t) ≤ α}. Then the preimage of Γt\St(α) is
isomorphic to the closed unit disc with rt disjoint open subdiscs removed,
where rt + 1 is the number of edges emanating from the vertex Γt\t.

(iii) For any cusp x and any i ≥ 0 let Cx,m denote the geometric realization of
the subgraph of ∆x with vertices vx,i, i ≥ m and edges ēx,i, i > m. Then
there exists an m0 such that for all m ≥ m0 the preimage of Cx,m under
ρΓ is isomorphic to D∗(C∞).

Furthermore, UΓ := {Γt\Ut : t ∈ T } is an admissible cover of Γ\Ω defined
over K∞.

Proof: As we lack a satisfactory reference, we sketch a proof of the above
result, which seems to be well-known, cf. [42], Thm.2.1. We restrict ourselves
to the case where Γ is p′-torsion free, which is the only case which will matter
later on. For the general case observe that any arithmetic subgroup Γ′ contains
a p′-torsion free arithmetic subgroup Γ of finite index. Thus to derive the above
theorem for Γ′, one may describe Γ′\Ω as the quotient of Γ\Ω by the finite group
Γ′/Γ. Details are left to the interested reader.

We will only sketch parts (ii) and (iii), as (i) is similar to, but simpler
than case (ii). We will explain the admissibility of UΓ when discussing the
compactification of Γ\Ω, cf. Remark 3.30. Let us fix t such that Γt is non-
trivial. Using Lemma 3.23, there exists a unique rational end [s] of P1(K), such
that Γt ⊂ Γs. Furthermore, pick γ ∈ GL2(K) such that γ[s] = (0 : 1) ∈ P1(K).
By replacing Γ with γΓγ−1, which by Corollary 3.15 is again an arithmetic
subgroup, we may assume [s] = (0 : 1).

Definition 3.26 We call an additive subgroup I of (K,+) a fractional almost-
ideal, if I contains a fractional ideal of A of finite index.

As Γ is p′-torsion free, there exists a fractional almost-ideal Is of A such that

Γs =
{(

1 b
0 1

)
: b ∈ Is

}
. Define It to be the finite additive subgroup of Is such

that Γt =
{(

1 b
0 1

)
: b ∈ It

}
.

Any vertex can be represented by a lattice whose basis is given by the row
vectors (1, y) and (0, πn∞) where n ∈ Z is unique and y ∈ K∞ is unique modulo
πn∞, so we assume t to be given by such a lattice. Then one has

StabGL2(K∞)(t) = StabGL2(K∞)

((
1 y
0 πn

∞

)−1

v0

)
=

(
1 −yπ−n

∞
0 π−n

∞

)
GL2(A∞)K∗∞

(
1 y
0 πn

∞

)
.

Because Γt is of the form given above, an explicit calculation shows that

Γt = Γs ∩ StabGL2(K∞)(t) =
{(

1 b
0 1

)
: b ∈ πn∞A∞ ∩ Is

}
,

which does not depend on y. In particular, It = πn∞A∞∩Is and typically n ≤ 0.
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We now turn to the proof of (ii), where we assume that Γt is non-trivial.
The preimage of St(α) under ρ is given by

Sα :=
{
z ∈ C∞ : |z − y − βπn∞|∞ ≥ |π∞|n+α

∞ for β ∈ k∞ and

|z − y|∞ ≤ |π∞|n−α∞
}
.

We consider the additive map f : z 7→
∏
i∈It

(z+ i) : C∞ → C∞. Clearly the
fiber of each w = f(z) is the orbit under Γt of an element z. We will determine
f(Sα) and show that the map Sα → f(Sα) identifies f(Sα) with the quotient
Γt\Sα. The explicit shape of f(Sα) will finish the proof of (ii).

Define J1 := π−n∞ It ∩ π∞A∞ and let J0 ⊂ k∞ be an additive set of repre-
sentatives of π−n∞ It modulo J1. Then It = πn∞(J0 + J1) and for β ∈ k∞ one
obtains:

|w − f(y + βπn∞)|∞ = |f(z − y − βπn∞)|∞ (8)

=
∏
j1∈J1

∏
j0∈J0

|z − y − (β + j0 + j1)πn∞|∞ (9)

=
∏
j0∈J0

|z − y − (β + j0)πn∞||J1|
∞ (10)

≥ |π∞|n|It|+α|J1|
∞ , (11)

where we use in (10) that |z − y − (β + j1 + j0)πn∞|∞ ≥ |π∞|n+α
∞ > |j1πn∞|∞

and in (11) that at most one of the factors in (10) is of absolute value less than
|πn∞||J1|

∞ .
Let Tα be the affinoid

Tα := {w : |w − f(y + βπn∞)|∞ ≥ |π∞|n|It|+α|J1|
∞ for all β ∈ k∞ and

|w − f(y)|∞ ≤ |π∞|(n−α)|It|
∞ }.

To prove surjectivity of f : Sα → Tα, note first that for any w we can find a
solution z ∈ C∞ such that f(z) = w. We leave it to the reader to show that for
z ∈ C∞ the element f(z) cannot satisfy the inequalities that describe Tα unless
z ∈ Sα.

Note that the description of f(Sα) only involves 1 + |k∞|/|J0| inequalities
as for β,β2 ∈ k∞ the inequalies

|z − f((y + βi)πn∞)|∞ ≥ |π∞|n|It|+α|J1|
∞ , i = 1, 2

describe the same set precisely when β1 − β2 ∈ J0. At the same time one may
verify that the number of edges in |Γ\T | originating from t is also given by
1 + |k∞|/|J0|.

So far, we only checked that the map f is finite-to-one between the sets
of points Sα and Tα. Because Sα is It-invariant, we have Sα = f−1(Tα). To
conclude the proof of (ii), we use the following lemma, whose proof is obvious
and left to the reader:

Lemma 3.27 The morphism of schemes A1 → A1 corresponding the ring map
k[w]→ k[z] : w 7→

∏
i∈It

(z + i) is a finite étale cover with covering group It.
The induced morphism of rigid spaces f : A1,rig → A1,rig has the same prop-

erty. In particular
f : Sα = f−1(Tα)→ Tα

is a finite étale cover with Galois group It, i.e., Tα ∼= It\Sα as affiniod spaces.
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For part (iii) we only sketch the proof of a slightly weaker statement which
suffices for all our applications, namely: For each cusp x there exists m0 such
that for all m1 ≥ m0 the set ρ−1

Γ (|Cx,m1 |) is isomorphic to the C∞-valued points
of D∗.

Let t be as in the proof of (ii). Then the path in T from t to ∞ is given
by taking for Mm the lattice generated by (1, y) and (0, πm∞), m ≤ n. For
m ≤ v∞(y), the lattice Mm is generated by the vectors (1, 0) and (0, πm∞).
Furthermore, by the theorem of Riemann-Roch, there exists an m0 ≤ v∞(y)
such that for allm ≤ m0 the reduction of π−m∞ Is∩A∞ modulo π∞A∞ equals k∞.

Let m1 ≥ m0 and let Cm1,∞ be the path given by the Mm for m ≥ m1. To
identify ρ−1

Γ (|Cm1,∞|) with a punctured closed disc in C∞, we define the map

z 7→ eIs
(z) := z

∏
i∈Isr{0}

(
1− z

i

)
: C∞ → C∞.

One can easily check that |eIs
(z)|∞ = |z||Is∩πm

∞A∞|
∞ cm for |π∞|m−1

∞ > |z|∞ ≥
|π∞|m∞ and m ≤ m0, where cm is the constant

cm =
∏

i∈Is∩πm
∞A∞,i 6=0

|i|−1.

We leave it to the reader to check that the map z 7→ eIs
(z)−1 induces for each

m ≥ m0 a biholomorphic map between Γ[Mm]\U[Mm] and the annulus

cm|π∞|
(m−1/3)|Is∩πm

∞A∞|
∞ ≥ |z|∞ ≥ cm|π∞|

(m−2/3)|Is∩πm
∞A∞|

∞ .

Similarly, one can show that if e is the edge connecting [Mm] and [Mm+1], then
eIs

induces a biholomorphic map between Γe\Ue and the annulus

cm|π∞|
(m−2/3)|Is∩πm

∞A∞|
∞ ≥ |z|∞ ≥ cm+1|π∞|

(m−4/3)|Is∩πm−1
∞ A∞|

∞ .

Cf. [43], §3, for further details.

3.7 Compactifying Γ\Ω
We recall the definition of properness for affinoid varieties:

Definition 3.28 An affinoid subdomain U := Spm(B) of an affinoid domain
X := Spm(B′) is called relatively compact, if there exists f1, . . . , fn in B′ such
that

(i) the map from the Tate algebra Tn to B′ which sends zi to fi is surjective,
and

(ii) there exists ε < 1 such that U is contained in {z ∈ X : supi |fi(z)|∞ ≤ ε}.

One writes U b X.
A rigid space space X is called proper (over K∞) if it has finite admissible

affinoid covers {Ui} and {Vj} such that for each j there exists an i such that
Vj b Ui.

By Theorem 3.25 we know that for each cusp x there exists m ≥ 0 such that
ρ−1
Γ (|Cx,m|) is isomorphic to a punctured disc. The rigid analytic space obtained

from Γ\Ω by gluing in the punctures for each cusp x is denoted by Γ\Ω̄. The
notion cusp is also used for the finitely many points glued into Γ\Ω. As they
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can be identified with Γ\P1(K), one defines Ω̄(C∞) := Ω(C∞)∪ P1(K), so that
the C∞-valued points of Γ\Ω̄ are in bijection with the elements of Γ\(Ω̄(C∞)).

Because the graph Y in Theorem 3.21 is finite, it is simple to see that the
rigid space Γ\Ω̄, contrary to Γ\Ω, has a finite admissible affinoid cover. Fur-
thermore recall that the cover UΓ is obtained from the cover W of |T | via ρ−1

and quotienting by Γ. If instead of the Čech cover in Definition 3.10, which
defines W, one uses stars and line segments which are slightly larger, and if
one applies the assertions of Theorem 3.25 regarding the cusps, the following is
rather obvious:

Theorem 3.29 The space Γ\Ω̄ is a proper smooth rigid analytic space over K∞.

Remark 3.30 We can now explain the admissibility of UΓ: LetX be an affinoid
subset of Γ\Ω. Then X will also be an affinoid subset of Γ\Ω̄. For each cusp
x let Dx be an affinoid disc around x such that there exists mx ∈ N with
ρ−1
Γ (|Cx,mx

|) ∼= Dx − {x}. Then the set X ∩ Dx is an affinoid subset of Dx

which does not contain x.
As the sets ρ−1

Γ (|ēx,i|) for i > m, in the notation of Theorem 3.21, form an
admissible affinoid cover of Dx r {x}, there exists m′x > mx such that X ∩Dx

is contained in
⋃m′

x
i=mx

ρ−1
Γ (|ēx,i|). As the subgraph Y is finite, it follows that X

is covered by finitely many affinoids of the cover UΓ.

Pictorially, one can ‘compactify’ Γ\T by replacing each cusp ∆x by the
graph {vx,0, vx,1, ēx,1}. Call the resulting graph Γ\T̄ . Then indeed Γ\|T̄ | is
compact. It is obtained by replacing the non-compact sets |∆x| ∼= R≥0 of Γ\|T |
by compact intervals. According to Theorem 3.25 one can adjust the reduction
map ρΓ to obtain a map

ρ̄Γ : Γ\Ω̄(C∞) −→ Γ\|T̄ |.

3.8 An affinoid cover of Γ\Ω̄
The main point of this subsection is to define a ‘good’ affinoid cover of Γ\Ω̄. We
assume for the following that Γ is p′-torsion free. Recall that T∞ is the unstable
part of T with respect to Γ and that it is labeled by the rational ends of T .

Let x ∈ Γ\P1(K) be a cusp and [s] a rational end in the Γ-orbit of x. Let Ts
denote the connected subtree of T∞ whose unique rational cusp is [s], and Ωs
the union of the affinoid subdomains Ut for all simplices t of Ts. The stabilizer
Γs acts on Ωs. Note that the quotient Γs\Ωs exists and contains a punctured
disc around the cusp s of Γ\Ω. (As this holds for any cusp x, there can be
only finitely many Γ-orbits of stable simplices!) By Γs\Ω̄s we denote the rigid
analytic space obtained from Γs\Ωs by adding the cusp.

Lemma 3.31 The space Γs\Ω̄s is isomorphic to an affinoid subdomain of P1,rig
K∞

.

Proof: To see this one only has to follow the proof of Theorem 3.25. Thus,
we may assume that [s] = (0 : 1). We define Is as in this proof. The proof of
parts (ii) and (iii) of Theorem 3.25 show that the image in P1,rig

K∞
of
⋃
t∈Ts

Ut
under eIs

consists of a punctured disc together with a finite union of affinoid
sets. If we add in the puncture, the image will consist of the complement in
P1,rig
K∞

of finitely many disjoint open discs. Thus it is an affinoid as asserted.
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For an arithmetic subgroup Γ which is p′-torsion free, we define the following
finite admissible cover ŪΓ of Γ\Ω̄: For each cusp x choose a rational end [sx]
representing it. For each stable Γ-orbit x′ in the set of simplices of Γ\(T r T∞)
choose a representing simplex tx′ . Define Ux to be the affinoid Γsx

\Ω̄sx
, and

define Ux′ to be the affinoid Γ\(ΓUtx′ ) ∼= Utx′ . Let

ŪΓ := {Ux : x a cusp of Γ\Ω} ∪ {Ux′ : x′ a simplex of Γ\(T r T∞)}.

Proposition 3.32 The collection ŪΓ of affinoid subdomains of Γ\Ω̄ is a finite
admissible cover.

The proof is obvious as the affinoids in ŪΓ cover Γ\Ω̄ by their very definition.
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4 Drinfeld modular varieties, the analytic side

Our definition of rank r Drinfeld-A-modules with some level structure carries
over verbatim from the algebraic to the rigid analytic setting over K∞ or C∞,
and hence so does our discussion of Drinfeld modular varieties and their exis-
tence, cf. also [10], [15], [58] and [57]. As a result, one obtains rigid analytic
moduli spaces Mrig

n and Mrig
K as the rigidification of the corresponding algebraic

spaces. In this section we will describe an explicit model for these spaces as
disjoint unions of quotients Γi\Ω. Another issue will be their compactification.
None of this is original and most of it can be found in the above sources.

Throughout this section, we fix a complete valued field L ⊂ C∞ containing
the valued field (K∞, | . |). Also we regard Ω(C∞) as a subset of A1(C∞), i.e., we
identify the point

(
z1
z2

)
∈ P1(C∞) r {∞} with z1/z2 ∈ C∞. Again K denotes

an open subgroup of GL2(Â).

4.1 Lattices

It is well known that over C∞ there is a bijection between rank r Drinfeld-
A-modules and projective A-lattices of rank r in C∞, cf. [8], Sect. 2.2. In
the following we will introduce a generalization of the above to general rigid
analytic varieties. This will in general not give a bijection, but will be useful in
the construction of Drinfeld-modules over a general rigid analytic base.

Let B be an affinoid algebra over L and let | |B denote any residue norm.
In particular, B is a Banach algebra with respect to | |B . Also, let ιB be the
composition A

ιK∞→ K∞ → L → B. A subset Λ of B will be called a discrete
A-lattice of rank r, if the following hold:

(i) Λ is a projective A-module of rank r via ιB ,

(ii) the elements of Λ r {0} are units and

(iii) for all c ∈ R>0 the set {x ∈ Λ r {0} : |x−1|B ≥ c} is finite.

Definition 4.1 Let S be a rigid analytic space over K∞. A local system
(L,Λ, s) of A-lattices of rank r on S, or short an A-lattice of rank r over S,
consists of the following data:

(i) A (rigid analytic) line bundle L on S.

(ii) A sheaf Λ of locally free A-lattices of rank r over the rigid analytic site.

(iii) A monomorphism s : Λ→ L of sheaves of A-modules such that locally on
the rigid analytic site Λ is a discrete A-lattice of rank r in L.

Note that for S = Spm(C∞) our definition agrees with the usual one, while if
L is not algebraically closed, it is more restrictive, cf. [23], Thm. 4.6.9.

LetMr,rig denote the fibered category that associates to each rigid analytic
space S, the set of all Drinfeld-A-modules of rank r over S. Similarly, one
defines the fibered category of all A-lattices of rank r as N r,rig. One has the
following basic result modeled after [10], Prop.3.1.

Proposition 4.2 There exists a natural transformation Ψr : N r,rig → Mr,rig.
For S = Spm(C∞) it is an equivalence.
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Proof: We will only provide the construction in the case that S = Spm(B) is
an affinoid, that H0(S,L) = B and that Λ := H0(S,Λ) is a rank r lattice. The
general construction can be obtained from the local one by gluing.

Define
eΛ : B → B : z 7→ z

∏
α∈Λ,α 6=0

(1− z

α
).

The argument of [10], Prop.3.1, shows that the following hold:

(i) The expression for eΛ is a convergent power series which defines an analytic
function on B.

(ii) eΛ is k-linear, i.e., for all α ∈ k and all x, y ∈ B, eΛ(αx+ y) = αeΛ(x) +
eΛ(y).

(iii) For all a ∈ A, there exists a unique k-linear polynomial ϕa(x) ∈ B[x],
namely

ax ·
∏

γ∈a−1Λ/Λr{0}

(
1− x

eΛ(γ)

)
,

such that the following diagram commutes:

0 // Λ //

a·
��

B
eΛ //

a·
��

B

ϕa

��
0 // Λ // B

eΛ // B.

(12)

The uniqueness of ϕa might need some clarification, as the horizontal maps on
the right in the above diagram need not be surjective. First note that by [5],
Thm. 5.2.6.3, the ring B is Jacobson, and hence that the intersection of all ideals
I of B such that B/I has finite length is zero. Therefore it suffices to prove the
uniqueness of ϕa after completing B at any maximal ideal. Also note, that we
may base change to C∞. In this situation, the assertion is a consequence of the
following lemma, which we state without proof.

Lemma 4.3 Let m be a maximal ideal of B and assume that L = C∞. Then
after completing B with respect to m, the map eΛ becomes surjective.

We continue with the proof of Proposition 4.2. By k-linearity, the coefficient
of xj in ϕa can only be non-zero if j is a power of q. The element ϕa ∈ B{τ} is
defined by replacing the term xq

i

in ϕa(x) by τ i. Given the above properties,
it is easy to check that A → B{τ} : a → ϕa defines a Drinfeld A-module on
B. Finally, the assertion on the case C∞ is classical and can be found in [10],
Prop. 3.1.

Remark 4.4 One can in fact show that Mr,rig Ψr

−→ N r,rig
n is the minimal hull

ofMr,rig which is closed under faithfully flat (or simply étale) descent.

Next we want to define level structures for lattices. For any abelian group
G, we define GS as the constant sheaf with stalk G on the rigid site of S. This
is analogous to the definition above Proposition 1.5, and so there should arise
no confusion.

Definition 4.5 An isomorphism ψ̃ : (n−1/A)r
S
→ n−1Λ/Λ is called a level n-

structure of (L,Λ, s).
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For r = 2 and K an open subgroup of GL2(Â) of conductor n, we make the
following definition.

Definition 4.6 Two level n-structures ψ̃, ψ̃′ are called K-equivalent if there ex-
ists g ∈ K such that ψ̃′ = ψ̃g (mod n). A levelK-structure [ψ̃] is a K-equivalence
class of level n-structures.

LetMr,rig
n denote the fibered category that associates to each rigid analytic

space S, the set of all Drinfeld-A-modules of rank r over S together with a level
n-structure. Let N r,rig

n denote the corresponding category for rank r lattices.
Analogously, one defines Mrig

K and N rig
K , for an open subgroup K ⊂ GL2(Â).

Proposition 4.7 The natural transformation Ψr of Proposition 4.2 extends to
a natural transformation Ψr

n : N r,rig
n → Mr,rig

n . The image of Ψr
n is the set of

pairs (ϕ,ψ) of Drinfeld-modules ϕ with a level structure ψ, such that ϕ is in the
image of Ψr. The analogous assertion holds for level K-structures.

Proof: We only give the proof for level n-structures and in the case that S =
Spm(B), H0(S,L) = B and Λ := H0(S,Λ) is an A-lattice of rank r. Let
ψ̃ : (n−1/A)r

∼=→ n−1Λ/Λ be a level n-structure.
Composing eΛ with ψ̃ gives a map ψ : (n−1/A)r → B which satisfies ϕaψ = 0

for all a ∈ n. Therefore ψ takes its values in ϕ[n]. Comparing cardinalities of
(A/n)r and the image of ψ composed with B → B/m for any maximal ideal m
of B, yields that ψ : (n−1/A)r → ϕ[n] is an isomorphism. This is the desired
extension of Ψr.

Finally, let ϕ be a Drinfeld-module which is the image under Ψr of a local
system Λ of rank r, and let ψ be a level n-structure on ϕ. The above argument
can be reversed to construct a corresponding level n-structure on Λ.

4.2 The moduli problem

Theorem 4.8 Let n be a proper non-zero ideal of A. Then Mr,rig
n is repre-

sentable by a smooth rigid analytic space over L. It is naturally isomorphic to
the rigidification of the algebraic moduli space of Drinfeld-A-modules of rank r
over L with a level n-structure.

Furthermore, if K is an admissible open subgroup of GL2(Â), then the above
holds for Mrig

K , too.

We will only give names to the moduli spaces in the rank 2 case, and denote
them by Mrig

n and Mrig
K , respectively. If we want to indicate the base field L,

we write Mrig
n,L and Mrig

K,L, respectively.

Proof: The proof is rather a triviality, once the algebraic proof is established.
We give it for r = 2 and level n-structures. Let Mrig

n denote the rigidification
of Mn,L, the moduli space for rank 2 Drinfeld-modules over L with a level
n-structure. Let (ϕrig

n , ψrig
n ) be the pair induced from the universal Drinfeld-

module on Mn,L together with its universal level structure. We will directly
show that (Mrig

n , ϕrig
n , ψrig

n ) represents M2,rig
n .

Let (ϕ̃, ψ̃) be a Drinfeld-module over the rigid space S. By the universality
of Mn,L, it arises from (ϕn, ϕn) on Mn,L via a unique map from S to Mn,L. It
is simple to check that this map induces a morphism S → Mrig

n , under which
(ϕ,ψ) arises from (ϕrig

n , ψrig
n ), and that there is a unique such morphism.

42



4.3 Analytic uniformization

Similar to the classical case when describing modular curves over the complex
numbers as quotients of the upper half plane, which is simple and very explicit,
one can obtain an explicit description of Mrig

K . A slight complication in the
Drinfeld modular case arises as A may have class number larger than one, and
therefore we will usually work in an adelic setting. We follow closely [8] and will
use the functor ΨK.

To get started, suppose that we want to describe Mrig
A (C∞). By Proposi-

tion 4.2, we need to describe discrete rank 2 lattices over A inside C∞ modulo
dilatations. This task can be decomposed into three steps. First describe sub-
lattices Λ of K2. Via K2 → K2

∞ = V∞ this gives rank 2 sublattices of K∞.
Second, describe the monomorphisms V∞ → C∞ up to dilatations — they can
be identified with points z ∈ Ω(C∞) ⊂ C∞. Third, determine when different
pairs (Λ, z) are isomorphic. Once one has added also level structures to the
above, this gives a ‘recipe’ to construct Mrig

K .
We first give the description of the lattices (which works with obvious mod-

ifications for any rank). Note that K2, as well as Â2 sit canonically inside
(Af )2 which is viewed as a module of row vectors. For g ∈ GL2(Af ), define
Λg := Â2g−1 ∩K2 ⊂ (Af )2. This is an A-lattice of rank 2.

Suppose we are also given a non-zero ideal n of A. Then the element g gives
canonically a level n-structure ψ̃g on Λg, via

(n−1/A)2
∼=−→ (n−1Â2g−1/Â2g−1)

∼=←− n−1Λg/Λg,

where the left isomorphism is multiplication on the right by g−1. For the right
isomorphism, one needs to show that Â2/Λg is a divisible A-module.

The following lemma, which is implicitly contained in op. cit., we state with-
out proof.

Lemma 4.9 The set {(Λg, ψ̃g) : g ∈ GL2(Af )} is the set of all A-sublattices
with a level n-structure in K2 of rank 2. Two pairs (Λg, ψ̃g) and (Λg′ , ψ̃g′) are
isomorphic, if and only if g′ ∈ gK.

We now consider the product Ω× (GL2(Af )/K) =: ΩK, which is an infinite
sum of identical copies of Ω. We denote the copy corresponding to gK by
Ωg. Define L := OΩK = OΩ × GL2(Af )/K and Λ as the sheaf of A-lattices∐
g∈GL2(Af )/K(Λg)Ωg

, where (Λg)Ωg
is the constant sheaf on Ωg with stalk Λg.

For g ∈ GL2(Af ) and y = (y0, y1) ∈ Λg ⊂ K2, define a section sg,y in OΩg

by
sg,y(z) := y0z + y1.

where z ∈ Ω ⊂ C∞. For fixed g and varying y, the collection of all these sections
gives rise to a map of rigid analytic sheaves

(Λg)Ωg
↪→ OΩg

.

Let {yg}g∈GL2(Af )/K be any choice of elements yg ∈ Λg. Then we denote by s{yg}
the section of ΩK which on Ωg is given by sg,yg

. Via the maps syg
one obtains a

monomorphism of rigid analytic sheaves of A-modules s : Λ ↪→ L. Furthermore,
the maps ψ̃g patch to give rise to an isomorphism (n−1/A)2ΩK → n−1Λ/Λ. Using
the affinoids Ut, t ∈ T , the reader may verify the following result.

Proposition 4.10 The quadruple (L,Λ, s, ψ) is a local system of A-lattices of
rank 2 with a level n-structure on ΩK.
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Next we describe an action of GL2(K) on (L,Λ, s, ψ) on the left so that over
C∞ the quotient of ΩK modulo this action parametrizes A-lattices of rank 2 in
C∞ with a level K-structure modulo dilatations.

Let γ be in GL2(K). We let γ act on the row vectors in (Af )2 by having its
inverse act on the right, so that in particular one has γ◦Λg = Λgγ−1 = Λγg. The
element γ maps z ∈ Ω to γz. Furthermore, z ∈ Ω gives rise to a monomorphism
V∞ → C∞, up to a dilatation, by mapping (y0, y1) ∈ V∞ to zy0 + y1. It is
simple to check that the dilatation class determined by Λg and z is the same as
that determined by γ ◦Λg and γz. This leads to the definitions of the following

actions of GL2(K), which we describe for the element γ, where γ−1 =
(
a′ b′

c′ d′

)
:

(z, gK) ∈ ΩK 7→ (γz, γgK)
f ∈ Γ(ΩK,L) 7→ (c′z + d′)f ◦ γ−1

(y, gK) ∈ Λ 7→ (yγ−1, γgK) y ∈ Λg
ψ : (n−1/A)2 → n−1Λg/Λg 7→ γ ◦ ψ : (n−1/A)2 → n−1Λγg/Λγg

In particular, one verifies from the above definitions that γ◦s{yg} = s{yγ−1gγ
−1}.

Via ΨK, this induces an action of GL2(K) on ΩK together with the Drinfeld-
module of rank 2 with a level K-structure, (ϕ(K), ψ(K)) := ΨK(L,Λ, s, ψ). In
[10], Prop. 6.6, it is shown that the map which sends a point of GL2(K)\ΩK(C∞)
to the corresponding GL2(K)-equivalence class of (ϕ(K), ψ(K)) induces a bijec-
tion

GL2(K)\ΩK(C∞)
∼=−→MK(C∞). (13)

Remark 4.11 The local system (L,Λ, s, ψ) does not descend to GL2(K)\ΩK,
because for y0 6= 0, the section sg,(y0,0) : z 7→ y0z on any Ωg is not invariant
under Γg = GL2(K)∩ g−1Kg. So while there is a universal Drinfeld-module on
the quotient, there is no local system on the quotient that could define it. Such
a system only exists on the stable part of ΩK.

We now want to give a local description of the bijection (13). This will
show that GL2(K)\ΩK is a meaningful definition of a rigid analytic space over
K∞ which carries a universal Drinfeld-module of rank 2 together with a level
K-structure.

Lemma 4.12 For any open subgroup K ⊂ GL2(Â) the determinant map in-
duces a bijection of double cosets

GL2(K)\GL2(Af )/K
∼=−→ K∗\(Af )∗/det(K) =: ClK,

where det(K) denotes the image of K in Â∗ under det.

Proof: Let K′ := K∩SL2(Af ). The strong approximation theorem, [28], §14.3,
asserts that SL2(K)K′ = SL2(Af ). An application of the snake lemma to the
following diagram yields the desired result:

0 // SL2(K)K′ // GL2(K)K

��

det // K∗ det(K)

��

// 0

0 // SL2(Af ) // GL2(Af )
det // (Af )∗ // 0.
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Remark 4.13 The above bijection identifies GL2(K)\GL2(Af )/K with the ray
class group ClK of the maximal abelian extension of K of conductor detK which
is totally split above ∞. In particular GL2(K)\GL2(Af )/K is finite.

Let {tν}ν ⊂ (Af )∗ be a set of representatives ofK∗\(Af )∗/det(K) and define

xν :=
(

1 0
0 tν

)
∈ GL2(Af ). (14)

By the above lemma, the xν form a set of representatives of GL2(K)\GL2(Af )/K.
Correspondingly, we set Γν := GL2(K)∩xνKx−1

ν . Thus for γ, γ′ ∈ GL2(K) and
g, g′ ∈ K one has γxνg = γ′xνg

′ ⇐⇒ γ−1γ′ ∈ Γν .

Lemma 4.14 The groups Γν are arithmetic subgroups of GL2(K). If K is
admissible, then the Γν are p′-torsion free.

Proof: It is not hard to see that there exists a non-zero ideal n of A such that
K(n) ⊂ xνKx−1

ν . By compact-openness of the groups involved, the inclusion is
of finite index. Thus

Γ(n) = K(n) ∩GL2(K) ⊂ xνKx−1
ν ∩GL2(K) = Γν

is an inclusion of finite index. This proves the first assertion.
For the second suppose that γ ∈ Γν ⊂ GL2(K) is of finite order prime to

p. As k is the field of constants of K, the minimal polynomial of γ is defined
over k. Thus the rational canonical form of γ over K lies in GL2(k). Hence a
GL2(K)-conjugate of γ lies in GL2(k). As GL2(K) ⊂ GL2(Af ), the element γ
must be of p-power order by the definition of admissibility. It follows that γ is
trivial.

By the results of the previous section, the quotient Γν\Ω exists as a rigid
space for any ν ∈ ClK. Hence the isomorphism

GL2(K)\ΩK ∼=
∐

ν∈ClK
Γν\Ω

shows that the left hand side has a meaningful description as a rigid analytic
space. As GL2(K) acts freely on (ϕ(K), ψ(K)), it follows that it induces a
Drinfeld-module of rank 2 with a level K-structure GL2(K)\(ϕ(K), ψ(K)) on
the quotient space GL2(K)\ΩK. The following is from [10], Prop. 6.6:

Theorem 4.15 Let ξ : GL2(K)\ΩK −→ Mrig
K,K∞ be the canonical map that

arises from the Drinfeld module GL2(K)\(ϕ(K), ψ(K)) via the universality of
Mrig
K,K∞ . Then ξ is an isomorphism.

For the proof, one notes that ξ is a map between two smooth rigid analytic spaces
over K∞ of dimension one, that ξ is an isomorphism on C∞-valued points, and
one shows that the map is an isomorphism on tangent spaces.

4.4 Compactification

We have two natural compactifications of GL2(K)\ΩK
∼=−→ Mrig

K,K∞ for an ad-
missible K: On the one hand, Theorem 3.29 yields a smooth compactification of∐
ν∈ClK Γν\Ω by compactifying each component. On the other, we are given in

Theorem 2.14 Drinfeld’s smooth compactification of MK over SpecA(n), where
n is a conductor of K. After base change to SpecK∞, rigidifying yields M

rig

K,K∞
as a second compactification of Mrig

K,K∞ .
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Theorem 4.16 The above two compactifications of Mrig
K,K∞ are canonically iso-

morphic, i.e., there exists a unique extension

ξ̄ :
∐

ν∈ClK
Γν\Ω̄

∼=−→M
rig

K,K∞ (15)

of the isomorphism ξ : GL2(K)\ΩK −→Mrig
K,K∞ .

Proof: Again for lack of a suitable reference, we sketch a proof. We note first
that by a simple Galois descent argument, it suffices to give the proof in the case
K = K(n). So, let I be the finite set Mn,K∞

r Mn,K∞ , and let {ci}i∈I denote

the corresponding points. Clearly the ci are also the points of M
rig

n,K∞
rMrig

n,K∞
.

For each ci, we choose a rational function fi on Mn,K∞
whose only pole is at

ci and define Ui = {z : |fi(z)| ≥ ri} for some sufficiently large ri ∈ R, such that
the Ui are pairwise disjoint. Furthermore, if Yν denotes the connected subgraph
of Γν\T from Theorem 3.21, and ρν the reduction map Γν\Ω → Γν\T , then
we also assume that all the Ui are disjoint from the union X0 of the ρ−1

ν (Yν),
viewed as a finite union of affinoid subdomains of Mrig

n,K∞
via ξ. Finally, note

that Ui is isomorphic to a closed disk because the map

Ui → Di := {w : |w| ≥ ri} : z 7→ fi(z)

is an mi-fold cover of Di only ramfied at ci with ramification degree mi, the
order of pole of fi at ci (for sufficiently small ri).

Let j ∈ J be an enumeration of the cusps c′j of
∐
ν Γν\Ω. Write i ∈ ν if

ci is a cusp of Γν\Ω. We now construct a bijection between the ci and the c′j :
Denote by Uci the affinoid {z : |fi(z)| ≤ ri}. As the intersection of affinoids is
again an affinoid, the set U c :=

⋃
ν

⋂
i∈ν Uci is a disjoint union of affinoids. By

the construction of the Ui, the affinoid U c lies inside
∐
ν Γν\Ω and contains X0.

Hence for each j there are discs D′j ⊂ Dj ⊂
∐
ν Γν\Ω̄ around the cusp c′j , such

that the Dj are disjoint and⋃
(Dj r {c′j}) ⊃

⋃
(Ui r {ci}) ⊃

⋃
(D′j r {c′j}).

As the Ui are connected and the Dj are disjoint and connected, each Ui r {ci}
lies inside at most one Dj r {c′j}. For the same reason, each D′j r {c′j} lies in
at most one Ui r {ci}. So from now on, we assume that I = J and D′i r {c′i} ↪→
Ui r {ci} ↪→ Di r {c′i}. We claim that there exist unique rigid analytic maps
D′i ↪→ Ui ↪→ Di extending the above inclusions. This will complete the proof of
the theorem.

As the cusps c′i are defined over K∞, after a base change to the field of
definition of ci, the discs D′i and Di will remain connected. As we may choose
Ui arbitrarily small, this shows that the field of definition of ci must be purely
inseparable overK∞, and hence equal toK∞ by smoothness of Mn,K∞

overK∞.
Thus each ofD′ir{c′i}, Uir{ci} andDir{c′i} is isomorphic toD∗ := {z : 0 <

|z| ≤ 1}, and one may assume that D′i r {c′i} ↪→ Ui r {ci} ↪→ Di r {c′i} is given
by explicit maps D∗

α
↪→ D∗ ↪→ D∗, where the composite map is multiplication

by a non-zero constant of norm at most 1. Based on the characterization of
non-vanishing functions on an annulus, and the injectivity of the given maps,
one can show that α(z) = az(1+

∑
n>0 anz

n) where a and the an are in K∞, the
sequence |an| converges to zero and all an are of norm less than one. Obviously,
this map extends in a unique way to a biholomorphic function in a neighborhood
of zero.
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In Proposition 3.32 we exhibited an affinoid cover ŪΓ of Γ\Ω̄ for any arith-
metic Γ. Via the isomorphism (15) these local affinoid covers can be combined
to give a finite affinoid cover ŪK of M

rig

K,K∞ . One can check that this cover is
independent of any choices used in the isomorphism.

Definition 4.17 The cover ŪK is called the standard affinoid cover of M
rig

K,K∞ .

We record another corollary of Theorem 4.16.

Corollary 4.18 For any arithmetic Γ, the quotient Γ\Ω̄ is isomorphic to the
rigidification of a smooth projective geometrically connected curve over K∞.

Proof: Assume first that Γ is one of the Γν that arise in the isomorphism (15)
for some admissible K. The functor X 7→ Xrig maps any smooth connected
curve over K∞ to a smooth connected rigid curve. Hence MK,K∞ consists of
exactly hK := card ClK connected components, which must all be projective.
Thus each Γν\Ω̄ arises from such a component via the functor X 7→ Xrig.

Let Γ be any arithmetic subgroup, and choose an A-lattice Λ of rank 2
in K and a non-zero ideal n such that AutA(Λ, n) ⊂ Γ ⊂ AutA(Λ). Clearly
AutA(Λ, n) arises as a Γν for K = K(n), and so we let XΓ,n be any component
of MK(n),K∞ such that Xrig

Γ,n
∼= Γ\Ω̄ under the isomorphism (15).

The quotient G := Γ/AutA(Λ, n) acts on AutA(Λ, n)\Ω̄ in the obvious way.
The corresponding action on MK(n),K∞ is given by an action on level structures,
which in general is no longer free. For example via the correspondence given in
the above theorem, one can see that this action fixes the component XΓ,n. It
follows easily that Γ\Ω̄ is isomorphic to (G\XΓ,n)rig.
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5 Drinfeld modular forms

This section is devoted to the definition of Drinfeld modular forms. Our treat-
ment is based on [15], VII, [7] and [55]. The first two parts give a rapid intro-
duction to modular forms on Ω and their re-interpretation in terms of harmonic
cocycles by Teitelbaum. This is followed by a thorough discussion of modular
forms on moduli spaces MK where we use adelic language. Unfortunately, this
is somewhat technical. However, the various reformulations of modular forms
we give in this context will all be needed when we introduce and compare Hecke
operators in various different settings.

Most results are well-known, but not available in the literature in the form
needed. In [55], a characterization of double cusp forms in terms of harmonic co-
cycles was given. We rework this in detail and obtain a similar characterization
in terms of the Steinberg module. Furthermore, we define integral Steinberg
cycles, which will be needed for the formulation of the Eichler-Shimura isomor-
phism in Section 10.

5.1 Modular forms for arithmetic subgroups

Let Γ be an arithmetic subgroup of GL2(K). For γ =
(
a b
c d

)
∈ GL2(K∞),

n, l ∈ Z and f : Ω(C∞)→ C∞ , we define

(f
∣∣∣∣
n,l

γ)(z) := f(γz)(det γ)l(cz + d)−n.

Note that (f
∣∣∣∣
n,l
γ)
∣∣∣∣
n,l
γ′ = f

∣∣∣∣
n,l

(γγ′).

Definition 5.1 A rigid analytic function f : Ω(C∞)→ C∞ is called a modular
function of weight n and type l (for Γ), if

f
∣∣∣∣
n,l

γ = f ∀γ ∈ Γ. (16)

We write Fn,l(Γ) for the space of such.

For γ ∈ GL2(K) define the rational end [sγ ] = γ(0 : 1) of T and define cγ
as the corresponding cusp in Γ\P1(K). Let Γ′s ⊂ Γs be the maximal p′-torsion

free subgroup. Then Γγ := γ−1Γ′sγ =
{(

1 b
0 1

)
: b ∈ Iγ

}
for some fractional

almost-ideal Iγ of A. Define Ωγ :=
⋃
{Ut : Γt ∩ Γγ is non-trivial}. If f is a

modular function for Γ, then the definition shows that f
∣∣∣∣
n,l
γ−1 is invariant

under Γγ , and in particular, the restriction of f
∣∣∣∣
n,l
γ to Ωγ induces a rigid

analytic function fγ : Γγ\Ωγ(C∞)→ C∞.
By Lemma 3.31, Γγ\Ωγ is an affinoid subdomain of P1 and by Theorem 3.25

there is a neighborhood of the image of the cusp cγ which is a punctured disc.
Therefore the function fγ has a Laurent-series expansion - possibly with infinite
principal part. It is easy to see that the index of the lowest non-vanishing term
of the Laurent series expansion of fγ only depends on the cusp cγ .

In analogy with the classical situation, the following notions are introduced:

Definition 5.2 An element f ∈ Fn,l(Γ) is a modular form, if for all γ ∈
GL2(K), the function fγ has vanishing principal part.

A modular form is called a cusp form, respectively double cusp form, if for
all γ ∈ GL2(K), the function fγ vanishes at the cusp cγ to the order at least 1,
respectively at least 2.
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The C∞-vector space of modular forms of weight n and type l for Γ is denoted
byMn,l(Γ), the corresponding space of cusp forms by Sn,l(Γ), and that of double
cusp forms by S2

n,l(Γ).
General convention: In the case l = n− 1, we drop the subscript l. This

convention will also be applied to the doubly indexed spaces defined later.

Remark 5.3 The Laurent series expansion of fγ can be made explicit by using
the reciprocal of the function eIγ

(z) :=
∏
i∈Iγ

(1−z/i) as a local coordinate near
the image of cγ on Γγ\Ωγ . Namely, for z ‘sufficiently close’ to [s], the function
f
∣∣∣∣
n,l
γ has an expansion

∑
aneIγ

(z)−n.

Note that while a priori, the weight can be any integer, the type should be
thought of as an element in Z/(lΓ), where lΓ is the order of the subgroup det(Γ)
of k∗. If lΓ = 1 it follows that for fixed n, all Mn,l are isomorphic, and the same
holds for the Sn,l and the S2

n,l.

Proposition 5.4 ([55], Lem. 15) Let g(Γ) denote the genus of Γ\Ω̄ and h(Γ)
the number of cusps of Γ\Ω. If Γ is p′-torsion free, then

dimC∞ Sn(Γ) = (n− 1)(g(Γ) + h(Γ)− 1).

By [55], Lemma 15, and the simple observation that any arithmetic subgroup Γ
contains a p′-torsion free arithmetic subgroup Γ′, one obtains the following.

Corollary 5.5 For no arithmetic Γ ⊂ GL2(K), there exist cusp forms of weight
less than 2.

As in the case of classical modular forms, one can interpret modular forms
as sections of suitable line bundles on Γ\Ω. We only indicate this in the case
when Γ is p′-torsion free. Define an action of γ =

(
a b
c d

)
∈ Γ on OΩ as follows.

A section f on an affinoid U is mapped to 1
cz+df ◦γ which is a section on γ−1U .

To see that ωΓ := Γ\OΩ exists as a line bundle on Γ\Ω, it suffices to consider
the action of Γt on OUt for any simplex t ∈ T . If Γt is trivial, there is nothing to
show. Otherwise, we may assume that t is a simplex of the unstable component
Ts of the rational end [s] = (0 : 1), i.e., that Γt ⊂

{(
1 b
0 1

)
: b ∈ K

}
∩ Γ. The

transformation property of a modular function shows that Γt acts trivially on
ωΓ

∣∣∣
Ut

. Hence ωΓ exists.

As we assume that Γ is p′-torsion free, it is not hard to show that ωΓ has
an extension ω̄Γ to Γ\Ω̄, which near the cusp cγ is isomorphic to OΓγ\Ω̄γ

. Let
[cusps] denote the divisor

∑
[c] where the sum is over all cusps of Γ\Ω̄. With

the above definitions in place, we obtain the following:

Proposition 5.6 For any n ∈ N0, there are canonical isomorphisms

Mn(Γ) ∼= H0(Γ\Ω̄, ω̄⊗nΓ ),
Sn(Γ) ∼= H0(Γ\Ω̄, ω̄⊗nΓ ([cusps])),
S2
n(Γ) ∼= H0(Γ\Ω̄, ω̄⊗nΓ (2[cusps])).

5.2 Harmonic cocycles

Definition 5.7 Let M be an abelian group. An M -valued function c : T o1 →M
on the oriented edges of T is called a harmonic cocycle if
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(i) for all vertices v of T , ∑
e∈T o

1 ,t(e)=v

c(e) = 0.

(ii) for all oriented edges e ∈ T o1 on has c(−e) = −c(e).

We now define various representations of an arithmetic group Γ and an A-
lattice Λ ⊂ K2 of rank 2 such that Γ ⊂ AutA(Λ). Recall that K2 is a space of
row vectors and that γ ∈ GL2(K) acts on v ∈ K2 by v 7→ γ ◦ v := vγ−1. We
denote by ΩA the module of differentials of A, and view it as a trivial GL2(K)-
module. For a projective (not necessarily finitely generated) A-module P , we
define its dual P ∗ := HomA(P,A). If P carries a right action of GL2(K), then
so does P ∗ in a natural way.

Let now R be an A-algebra and n ≥ 2. We define the representation
Vn,l(Λ⊗A R) of Γ as

Vn,l(Λ⊗A R) :=
(
(detΛ)l+1−n ⊗A Symn−2 HomA(Λ,ΩA)

)∗
⊗A R.

This is a projective left R-module of rank n−1. We write γn,l for the operation
of an element γ ∈ Γ on Vn,l(Λ⊗AR). If R = A, we simply write Vn,l(Λ). We fix
an isomorphism K ∼= ΩK ∼= ΩA⊗AK. For K ⊂ R, this shows that Vn,l(Λ⊗AR)
is independent of Λ, and so we simply write Vn,l(R). If K∞ ⊂ R, then there is a
natural action for any γ ∈ GL2(K∞) on Vn,l(R), which we also denote by γn,l.

Remark 5.8 We chose a different normalization than the one given in [55], but
we also have a different action on Λ and below we also use a slightly different
residue map. The reason will eventually become apparent, when we prove the
Eichler-Shimura isomorphism, cf. Theorem 10.3.

Definition 5.9 Let Γ ⊂ GL2(K) be arithmetic and assume that R contains K.
We define Char

n,l (Γ, R) as the set of Γ-invariant harmonic cocycles which take
values in Vn,l(R), and call them R-valued harmonic cocycles of weight n and
type l (on Γ).

According to our general convention we write Char
n (Γ, R) for Char

n,n−1(Γ, R) and
Vn(Λ⊗R) for and Vn,n−1(Λ⊗R).

In order to construct the residue map

ResΓ : Sk,l(Γ)→ Char
k,l (Γ,C∞)

from [55], we first have to explain the notion of residue for a holomorphic func-
tion on Ω(C∞) and an oriented edge e := vv′

→ of T . Let ē be the edge {v, v′} and
choose an isomorphism between Uē and Ann := {z ∈ C∞ : 1 ≤ |z|∞ ≤ q1/3}
such that the boundary |z|∞ = 1 comes from the part of Uē that lies near v and
the boundary |z|∞ = q1/3 from the part near v′. Such an isomorphism is not
unique. However if we fix a differential ω on Ann and consider its (convergent)
Laurent expansion ω =

∑
n∈Z anz

n dz, then the coefficient a−1 is unchanged
under automorphisms of Ann which preserve the boundary components. In
analogy with the classical terminology, a−1 is called the residue of ω. In partic-
ular, for any holomorphic function h on Uē, the notion of a residue of h dz on
Uē relative to e is well-defined. We write Rese h dz.

Suppose R = C∞ and let X,Y be the dual basis of the standard basis f1, f2
of K2. Then Symn−2(Hom(K2,C∞)) is the set of homogeneous polynomials
over C∞ in X, Y of degree n − 2. Hence an element of Vn,l(C∞) is determined
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by the values it takes on the basis XiYn−2−i, i = 0, . . . , n−1. One easily checks
that for w ∈ (Symn−2 Hom(K2,C∞))∗ and γ ∈ GL2(K∞) one has

(γn,lw)(XiYn−2−i) = det γ1−lw((dX− cY)i(−bX + aY)n−2−i).

For f ∈ Sn,l(Γ) and an oriented edge e of T o, we define an element (Res f)(e)
in Vn,l(C∞) by

(Res f)(e)(XiYn−2−i) := Rese(−z)n−2−if(z) dz.

As we have a different normalization as the one given in [55], let us compute
the effect of the residue map on f

∣∣∣∣
n,l

. Let γ =
(
a b
c d

)
∈ GL2(K∞). Then

γn,l(Res(f
∣∣∣∣
n,l

γ))(e)(XiYn−2−i)

= (Res(f
∣∣∣∣
n,l

γ))(e)(det γ1−l((dX− cY)i(−bX + aY)n−2−i))

= Rese(f
∣∣∣∣
n,l

γ)(z) det γ1−l(d+ cz)i(−b− az)n−2−i dz

= Rese f(γz) det γl(cz + d)−n det γ1−l(d+ cz)i(−b− az)n−2−i dz

= Resγe f(w)(−w)n−2−i dw

= (Res f)(γe)(XiY n−2−i)

Thus we find
Res(f

∣∣∣∣
n,l

γ)(e) = γ−1
n,l (Res f)(γe). (17)

This shows that Res f takes its values in Char
n,l (Γ,C∞). But more is true:

Theorem 5.10 ([55], Thm. 16) The map ResΓ : Sn,l(Γ) → Char
n,l (Γ,C∞) is

an isomorphism.

5.3 The Steinberg module

Let Γ be p′-torsion free. There is an alternative description of harmonic cocycles
which makes essential use of a complex based on the stable simplices of T . Define
T st

0 , T st
1 , T o,st1 as the set of stable vertices, edges and oriented edges of T with

respect to Γ, respectively. For a vertex v of T , we define [v] ∈ Z[T st
0 ] to be zero,

if v is unstable, and to be the symbol corresponding to v, if v is stable. For
e = vv′
→ ∈ T o,st1 , we define

∂Γ[e] := [v′]− [v].

Note that the vertices adjacent to a stable edge are not necessarily stable them-
selves. However, if a vertex is stable, then so are all adjacent edges.

In slight abuse of notation, we define Z[T o,st1 ] := Z[T o,st1 ]/〈[−e] + [e] : e ∈
T o,st1 〉. We continue to use the notation [e] for symbols in Z[T o,st1 ]. Because
∂Γ[−e] = −∂Γ[e], there is an induced map from Z[T o,st1 ] to Z[T st

0 ]. The stable
complex for Γ is defined as

CstΓ,• : . . .←− 0←− Z[T st
0 ] ∂Γ←− Z[T o,st1 ]←− 0←− . . . (18)

By the very definition of stability and the finiteness of the number of Γ-orbits
of stable simplices, the Z[Γ]-modules Z[T st

0 ] and Z[T o,st1 ] ∼= Z[T st
1 ] are free of
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finite rank. In [48], II.Thm. 13, it is shown that ∂Γ is surjective. Hence the
Steinberg module StΓ of Γ defined by

0 −→ StΓ −→ Z[T o,st1 ] ∂Γ−→ Z[T st
0 ] −→ 0 (19)

is a finitely generated, projective Z[Γ]-module.
For any group G, let us abbreviate ⊗Z[G] by ⊗G. Note that for a left G-

module M and a right G-module N , the module N ⊗GM is isomorphic to the
covariants (N ⊗M)G.

For n ≥ 2 and anyK-algebra R, there is a map ΦΓ : Char
n (Γ, R)→ Z[T o,st1 ]⊗Γ

Vn(R) defined by
ΦΓ(c) :=

∑
e∈Γ\T o,st

1 /{±1}

[e]⊗ c(e).

The indexing set of the sum is formed by choosing one oriented edge in each class
of Γ\T st

1 . This map is well-defined because c is Γ-invariant. The harmonicity of
c implies that ΦΓ takes its image in StΓ ⊗Γ Vn(Λ⊗R). The following is shown
in [55], Lem. 20:

Proposition 5.11 If Γ is p′-torsion free and R is a K-algebra, the map

ΦΓ : Char
n (Γ, R)→ StΓ ⊗Γ Vn(R) ∼= H1(CstΓ,• ⊗Γ Vn(R))

is an isomorphism.

That ΦΓ is an isomorphisms implies in particular, that a harmonic cocycle
is determined by its values on the stable edges. Therefore it must be possible
to express the value on any edge in terms of the values of suitable stable edges.
The following taken from [55], p. 506, explains how to do this:

Definition 5.12 For an edge e ∈ T o1 , define its source, which is a subset of T o1 ,
as follows: If e is stable, then src(e) = {e}. If e is unstable, then src(e) is the
set of all e′ ∈ T o,st1 such that

(i) there exists an unstable vertex v′ of e′ such that e lies on the half line from
v′ to b(v′), where b is defined below Def. 3.22, and

(ii) e′ has the same orientation as e.

Lemma 5.13 For c ∈ Char
n,l (R) and e ∈ T o1 one has c(e) =

∑
e′∈src(e) c(e

′).

Based on Proposition 5.11, the following generalizes Definition 5.9 for groups
Γ which are p′-torsion free.

Definition 5.14 Let Γ be p′-torsion free, Λ ⊂ K2 a lattice such that Γ ⊂
AutA(Λ), and R an A-ring. We define the module of R-valued Steinberg cycles
of weight n (on Γ, relative to Λ,) as

CSt
n (Γ,Λ⊗R) := StΓ ⊗Γ Vn(Λ⊗R).

As StΓ is a finitely generated projective Z[Γ]-module, it follows easily that
CSt
n (Γ,Λ⊗A R) is a finitely generated projective R-module.

As a last result on the Steinberg-module, we describe a complex which is
quasi-isomorphic to CstΓ,•, which will be needed in the application in later sec-
tions.

For an oriented edge e, define the corresponding non-oriented edge as ē and
the map

∂̃Γ : Z[T o,st1 ] −→ Z[T st
1 ]⊕ Z[T st

0 ] : [e] 7→ ([ē], [t(e)]).
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Recall that we have [v] = 0 if v is an unstable vertex. Define for any Γ the
complex

C̃stΓ,• : . . .←− 0←− Z[T st
1 ]⊕ Z[T st

0 ] ∂̃Γ←− Z[T o,st1 ]←− 0←− . . . (20)

Proposition 5.15 The diagram

Z[T st
1 ]

∂Γ //

α1:[e] 7→[e]−[−e]
��

Z[T st
0 ]

α0:[v] 7→(0,[v])

��
Z[T o,st1 ]

∂̃Γ // Z[T st
1 ]⊕ Z[Zst

0 ]

defines a quasi-isomorphism CstΓ,• −→ C̃stΓ,•.

Proof: For the diagram to define a morphism of complexes, we have to show
that it commutes. This follows from

∂̃Γα1([e]) = ∂̃Γ([e]− [−e]) = (0, [t(e)])− (0, [t(−e)])
= α0([t(e)]− [t(−e)]) = α0∂Γ([e]).

The morphism of complexes α• is injective on objects. Therefore to see that
it defines a quasi-isomorphism, we need to show that the cokernel is an exact
complex. But the cokernel is easily identified with

Z[T st
1 ] id−→ Z[T st

1 ],

where the map on the 1-chains sends [e] to [ē] and the map on 0-chains maps a
pair ([ē], [v]) to the symbol [ē].

5.4 Double cusp forms and Steinberg cycles

We will give a characterization of double cusp forms in terms of Steinberg cycles.
Again we assume throughout that Γ is p′-torsion free.

We first recall the definition of StΓ as given in [48], II.2, for an arithmetic
subgroup Γ of GL2(K). Define degΓ : Z[P1(K)] −→ Z :

∑
ns[s] 7→

∑
ns. This

map is clearly Γ-equivariant, if we let Γ act on Z[P1(K)] via its usual action on
ends, and on Z via the trivial action.

Proposition 5.16 ([48], § 2.9) As a Z[Γ]-module StΓ is isomorphic to the
kernel of degΓ.

Proof: As in Section 3, the subgraph of T formed by the unstable simplices
will be denoted T∞. The symbols {v} denote the elements of the canonical basis
of Z[T0]. They are not to be confused with the symbols [v] used in the definition
of ∂Γ. Again we define the boundary map

∂ : T o1 → Z[T0] : e = vv′
→ 7→ {v′} − {v},

which extends linearly to Z[T o1 ] and whose restriction to Z[T o∞,1] maps to Z[T∞,0].
As in the previous subsection, we define the modules Z[T o0] and Z[T o∞,1] as the
quotients of the respective modules without a bar by the submodules generated
by the chains [e] + [−e]. Clearly the map ∂ induces a map on these, too.
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Consider the diagram

0 // Z[T o∞,1] //

∂

��

Z[T o1] //

∂

��

Z[T o,st1 ] //

∂Γ

��

0

0 // Z[T∞,0] // Z[T0]
β // Z[T st

0 ] // 0.

It is commutative and compatible with the action of Γ. Since T is a (connected)
tree, the middle arrow is injective with cokernel Z. The map to Z is given by
mapping

∑
nv{v} to

∑
nv.

Because T∞ is a collection of trees, the left hand vertical map is injective,
too. Recall that the map b defined a labeling of the components of T∞. To
describe the cokernel, we define the Γ-equivariant map

b̃ : Z[T∞,0]→ Z[P1(K)] :
∑

v∈T∞,0

nv{v} 7→
∑

nv[b(v)]. (21)

By the definition of b, the map b̃ is surjective with kernel (Z[T o∞,1], ∂).
Regarding the right hand vertical map, we have seen earlier that it is sur-

jective and its kernel was defined to be StΓ. Now the Snake Lemma yields the
short exact sequence

0 −→ StΓ
αΓ−→ Z[P1(K)]

degΓ−→ Z −→ 0 (22)

of Z[Γ]-modules, where αΓ denotes the connecting morphism. This proves the
proposition.

To make the map αΓ explicit, fix an element
∑
ne[e] ∈ StΓ. Via T o,st1 ↪→ T o1 ,

this can be regarded as an element in Z[T o1]. Being in the kernel of ∂Γ means
that ∂(

∑
ne[e]) ∈ Ker(β), where β is as in the above diagram. In other words,

all symbols {v}, v ∈ T0, that appear in ∂(
∑
ne[e]) ∈ Ker(β) with a non-zero

coefficient, belong to a vertex in T∞. To such vertices, we apply the map b to
obtain an end, i.e., an element of P1(K).

This shows that αΓ can be described as the restriction of the map Z[T o,st1 ]→
Z[P1(K)] to StΓ, which on symbols [e], e ∈ T o,st1 , is defined as follows: First
the symbol [e] is mapped to the sum over the symbols of its unstable boundary
vertices with the appropriate signs. (The sum consists of at most two terms.)
Then this linear combination is mapped via the map b̃ defined in (21) to a linear
combination of symbols of the corresponding ends.

Definition 5.17 Let Γ be p′-torsion free, Λ ⊂ K2 a lattice such that Γ ⊂
AutA(Λ), and R and A-algebra. We define CSt,2

n (Γ,Λ⊗R) as the kernel of

αΓ ⊗ id : StΓ ⊗Γ Vn(Λ⊗R) αΓ−→ Z[P1(K)]⊗Γ Vn(Λ⊗R),

and call it the module of doubly cuspidal Steinberg cycles over R of weight n
and level Γ (relative to Λ).

For R = K, and thus for any K-algebra R, the module CSt,2
n (Γ,Λ ⊗ R) is

projective over R. However for general A, this will not be the case.

Proposition 5.18 Suppose that Γ is p′-torsion free and R is a field containing
K. Then

dimRCSt,2
n (Γ, R) =

{
g(Γ) if n = 2

(n− 2)(g(Γ) + h(Γ)− 1) + g(Γ)− 1 if n > 2
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Proof: If we tensor the short exact sequenc (22) over Z[Γ] with Vn(R) and use
the above definition, we obtain the following four term exact sequence:

0→ CSt,2
n (Γ, R)→ CSt

n (Γ, R)→ Z[P1(K)]⊗Γ Vn(R)→ Z⊗Γ Vn(R)→ 0

The last term vanishes unless n = 2 in which case it is isomorphic to R. If
{Γc : c ∈ cusps} is a set of representatives of stabilizer subgroups for the cusps
of Γ\Ω, then

Z[P1(K)]⊗Γ Vn(R) ∼=
⊕
c

Vn(R)Γc .

One can show that each of the terms Vn(R)Γc is isomorphic to R, cf. Re-
mark 5.23. The formula is now easily derived from Proposition 5.4.

The following theorem justifies the above definition:

Theorem 5.19 The isomorphism Sn(Γ) ∼= CSt
n (Γ,C∞) given by ΦΓ ◦ ResΓ re-

stricts to an isomorphism S2
n(Γ) ∼= CSt,2

n (Γ,C∞).

The above theorem and Proposition 5.18 yield:

Corollary 5.20 Suppose that Γ is p′-torsion free. Then

dimC∞ S2
n(Γ,C∞) =

{
g(Γ) if n = 2

(n− 2)(g(Γ) + h(Γ)− 1) + g(Γ)− 1 if n > 2

For the proof of Theorem 5.19, we will need the following well-known lemma,
whose simple proof is omitted.

Lemma 5.21 Let G be some group and W a K[G]-module, which is finite di-
mensional over K. Then (W ∗)G ∼= (WG)∗ via the map which arises from
W ∗ → (WG)∗ : f 7→ f|WG .

Recall that Vn(C∞) is defined as the dual of the set C∞[X,Y]n−2 of ho-
mogeneous polynomials in C∞[X,Y] of degree n − 2 with the (left) action of
γ =

(
a b
c d

)
∈ GL2(K) given by

γ(X) = aX + cY γ(Y) = bX + dY.

Let [s] = (0 : 1) with Γs =
{(

1 a
0 1

)
: a ∈ Is

}
for some fractional almost-ideal

Is of A.

Corollary 5.22 The vector space C∞[X,Y]Γs

n−2 has Xn−2 as a basis. We iden-
tify its dual with C∞ by evaluation at Xn−2. Then the isomorphism

Vn(C∞)Γs

∼=−→ (C∞[X,Y]Γs

n−2)
∗ ∼= C∞

is given by evaluating a functional v ∈ Vn(C) at Xn−2.

Proof: The second assertion is immediate from the first and the previous
lemma. So it remains to identify the space C∞[X,Y]Γs

n−2, which obviously con-
tains C∞Xn−2.

Let P be a homogeneous polynomial of degree n−2 which is invariant under
Γs and consider p(y) := p(1, y). Then p(y) = p(y − a) for all a ∈ Is. Since Is is
infinite, p must be constant, and so P must lie in C∞Xn−2.
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Remark 5.23 The argument used in the proof of the previous corollary also
shows the following: Suppose F is an A-field (possibly finite) and that under
the map Aut(Λ) 7→ Aut(Λ⊗A F ), the image of the p-group Γs contains at least
n− 1 elements. Then Vn(Λ⊗A F )Γs

is one-dimensional.

Lemma 5.24 For i = 1, . . . , l, let ζi be in C∞ and ri in R>0, such that the

‘closed’ discs Di := {z ∈ C∞ : |z−ζi|∞ ≤ ri} are disjoint. By
◦
D i we denote the

‘open’ disc {z ∈ C∞ : |z− ζi|∞ < ri}. Let f be holomorphic on D := P1−
⋃ ◦
D i

with f(∞) = 0. Then

f ′(∞) =
∑
i

Res∂Di
f(z) dz,

where the ∂Di = Dir
◦
D i are oriented toward ∞ (see proof) and f is given near

∞ in local coordinates 1/z.

Proof: Choose radii r′i > ri such that the corresponding discs D′i ⊃ Di are
still disjoint. Represent f on the annulus Ai := {z ∈ C∞ : |z − ζi|∞ ∈ [ri, r′i]}
as a convergent Laurent series ∑

n∈Z
ãn,i(z − ζi)n.

Then Res∂Di
f(z)dz = ã−1,i.

By [12], I.1.3 Prop., on D the function f can be uniquely written as a
convergent series

f =
∞∑
n=1

l∑
i=1

a−n,i(z − ζi)−n. (23)

On the annulus Ai, the functions (z−ζj)−n, j 6= i, are holomorphic. Comparing
principal parts, it follows that ãn,i = an,i for n < 0. Differentiating (23) and
evaluating at ∞ yields:

− lim
z→∞

f ′(z) =
n∑
i=1

a−1,i =
∑
i

Res∂Di
f(z)dz.

However in local coordinates w = 1
z at infinity, one has

∑
bnw

n =
∑
bnz
−n.

Therefore
d

dw
f|w=0 = − lim

z→∞
f ′(z),

and the asserted equality follows.

Let f be in Sn(Γ). Fix [s] = (0 : 1), Γs and Is as above Corollary 5.22.
Let Ts be the subtree of simplices t with b(t) = (0 : 1), and define Ωs ⊂ Ω as
the union of all affinoid subdomains Ut where t is a simplex of Ts. On these
two objects, there is a natural action of Γs, and we had seen that f descends
to a holomorphic function fs on Ds := Γs\Ωs. The space Ds was identified
as an affinoid subdomain of P1 with ∞ removed in Lemma 3.31. The point
∞ corresponds to the cusp of [s]. Because f is cuspidal, it extends by zero
holomorphically to this cusp.

For any end [s], we define the source of [s] as

src([s]) :=
⋃
{src(e) : e ∈ T os,1, e points toward [s]}

= {e ∈ T o,st1 : b(t(e)) = [s]}.
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Lemma 5.25 Let the notation be as above.
(a) The group Γs acts freely on src([s]) with finitely many orbits, say rep-

resented by edges e1, . . . , el.
(b) For [s] = (0 : 1), the map

Char
n (Γ,C∞)

∼=→ CSt
n (Γ,C∞) αΓ⊗id→

⊕
Vn(C∞)Γi

pr→ Vn(C∞)Γs
∼= C∞, (24)

where pr is the projection onto the factor at [s], is given by sending a cocycle c
to
∑l
i=1 c(ei)(X

n−2).
(c) Suppose c = ResΓ f . Then

∑l
i=1 c(ei)(X

n−2) = f ′s(∞), where at the
cusp ∞ we take the local coordinate w = 1/z.

Proof: To prove (a), note first that Ts is acted on by Γs. Therefore the source
of [s] admits an action of Γs. Because the source consists of stable edges,
this action must be free. To prove the finiteness assertion, we claim that the
canonical map Γs\ src([s]) → Γ\T st

1 is injective. Since the set on the right is
finite, this will finish the proof of (a).

To show the claim let e, e′ both be in the source of [s] and assume there is a
γ ∈ Γ such that γe = e′. Let s and s′ be the half lines starting at e, respectively
e′ that both represent [s]. Elements of Γ preserve stable and unstable simplices.
Therefore γs is a rational half line whose initial edge e′ is stable and all of
whose other edges are unstable. Furthermore e′ points in the direction of the
end [γs]. But then γs is, except for e′ the half line from the unstable vertex
t(e′) to b(t(e′)). Because s′ is another such half line, we must have γs = s′, i.e.,
γ ∈ Γs, as claimed.

For (b), recall that the first isomorphism in (24) sends c to∑
e∈Γ\T o,st

1 /{±1}

[e]⊗ c(e).

Let us assume that the set of representatives Γ\T o,st1 /{±1} contains the edges
ei. For the map

CSt
n (Γ,C∞)→ Vn(C∞)Γs

these are the only edges that are relevant.
For each ei denote by vi its unique vertex that belongs to Ts. (Because T

is a tree, and hence contains no loops, it is not possible that both ends of an
edge belong to the same unstable region.) From our explicit description of αΓ

given above Definition 5.17, we see that the image of c in Vn(C∞)Γs
is given as∑

i{[s]}⊗Γs
c(ei), where {[s]} is the symbol in Z[P1(K)] for the rational end [s].

Lemma 5.22 completes the proof of (b)
For the last part, we recall that (ResΓ f(z) dz)(ei) is given as the residue of

f(z) dz on the annulus Uei
with the orientation inherited from ei. Furthermore,

this residue only depends on a neighborhood of Uei
∩ Uvi

inside Uvi
. Since ei

is stable, such a neighborhood can be chosen so that it maps biholomorphically
into Ds. Let ∂iDs denote the corresponding boundary part of Ds oriented
toward ∞. Then we have

Res∂iDs
fγ(z) dz = (ResΓ f)(ei).

The proof of (c) now follows from (b) and Lemma 5.24.
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Proof of Theorem 5.19: Via a suitable γ ∈ GL2(K), we can move any end to
(0 : 1). This was precisely the way in which we defined cusp forms and double
cusp forms in Definition 5.2. Therefore the above lemma applies to all cusps
and it shows that f is a double cusp form of weight n for Γ if and only if its
image lies in the kernel of αΓ ⊗ idVn(C∞), which is precisely CSt,2

n (Γ,C∞).

Finally we want to comment on the integrality properties of CSt,2
n (Γ,Λ⊗R).

Proposition 5.26 Fix n ∈ N. Suppose there exists a non-zero ideal n of A
such that

(i) Γ ⊃ Γ(n),

(ii) the class group of A(n) is trivial,

(iii) R is an A(n)-algebra, and

(iv) for all p ∈ Max(A(n)) the residue field kp has order at least n− 2.

Then the module CSt,2
n (Γ,Λ⊗R) is projective and of finite rank over R.

The same conclusion holds if either R is a Dedekind domain or flat over A.

Proof: The second assertion is rather obvious in the case that R is a Dedekind
domain, since from the definition we have CSt,2

n (Γ,Λ⊗R) ⊂ CSt
n (Γ,Λ⊗R). The

module on the right is projective and hence torsion free, and therefore the
submodule CSt,2

n (Γ,Λ⊗R) has the same properties.
Next we prove the first assertion. For this let [s1], . . . , [sr] be rational ends

which give a complete set of representatives of the cusps, so that

Z[P1(K)] ∼=
r⊕
i=1

IndΓ
Γi

Z,

where we abbreviate Γi := Γ[si].
We first claim that under our hypothesis, the modules Mn := Vn(Λ⊗A(n))Γ

and Mn,i := Vn(Λ⊗A(n))Γi
are projective over A(n). By Remark 5.23, we have

rankMn,i = 1 for all i, n, rankM2 = 1 and rankMn = 0 for n > 2. Because
A(n) is a Dedekind domain, it suffices to show that the ranks at the special
fibers above all p 6 | n are the same as the generic rank.

Let us first consider the modules Mn ⊗ kp for such a prime p, where the
case n = 2 is trivial, and so we assume n > 2. By (i), we have Mn ⊗ kp ⊂
((Symn−2 k2

p)SL2(kp))∗ = 0, because n− 2 < |kp|. r For the modules Mn,i ⊗ kp,
we proceed as follows: By (ii), any projective module over A(n) is free. This
implies that any Borel in GL2(A(n)) is conjugate (over this group) to a standard
Borel. Hence it follows that Γi = Γ ∩ gB0g

−1 for some g ∈ GL2(A(n)) and the
standard Borel B0 of GL2(A(n)). Because Γ is p′-torsion free, this and (i) imply
that Γi modulo Γi ∩ Γ(p) is isomorphic to {

(
1 b
0 1

)
: b ∈ kp}. By Remark 5.23

and condition (iv), we have dimkp Mn,i ⊗ kp = 1. This finishes the proof of the
claim.

The claim implies that all the modules in the 4-term exact sequence

0 −→ CSt,2
n (Γ,Λ⊗A(n)) −→ CSt

n (Γ,Λ⊗A(n))
−→ ⊕iVn(Λ⊗A(n))Γi

−→ Vn(Λ⊗A(n))Γ −→ 0

are projective. Therefore tensoring it with R over A(n), which is possible by
(iii), yields the analogous 4-term sequence for R. But then

CSt,2
n (Γ,Λ⊗R) ∼= CSt,2

n (Γ,Λ⊗A(n))⊗A(n) R.
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By the part already shown CSt,2
n (Γ,Λ⊗A(n)) is projective over A(n). The first

assertion of the proposition is now obvious.
To prove the second assertion in the case where R is flat over A, one tensors

again the above 4-term sequence with R over A. Because R is A-flat, the
resulting sequence is exact. One concludes as in the previous paragraph.

This concludes our discussion of Drinfeld modular forms in the local case.
We now turn to the global situation.

5.5 Adelic modular forms

Our presentation borrows heavily from the discussion of Hilbert modular forms
as given in [52]. We will develop the theory in global (i.e. adelic) as well as a
local form. Fix an open subgroup K of GL2(Â) and define xν , Γν as in (14).
We will frequently make use of the isomorphism

ξ :
∐
ν

Γν\Ω
∼=←− GL2(K)\(Ω×GL2(Af )/K),

where the right hand side can be identified with a coarse moduli space forMrig
K .

Regarding the notation we make the following conventions. Elements in
GL2(A) will be denoted by w = (wf , w∞), where wf ∈ GL2(Af ) and w∞ ∈
GL2(K∞). We also use the symbol g for elements in GL2(Af ), gf for an element
in K and g∞ for elements in GL2(K∞). Finally elements in GL2(K) are usually
denoted by α or γ.

Definition 5.27 (Local Definition) The space of global modular functions of
level K, weight n and type l is defined as

Fn,l(K) :=
∏

ν∈ClK
Fn,l(Γν).

The respective subspaces of modular forms, cusp forms, and double cusp forms
are defined as

Mn,l(K) :=
∏
ν

Mn,l(Γν), Sn,l(K) :=
∏
ν

Sn,l(Γν), S2
n,l(K) :=

∏
ν

S2
n,l(Γν).

A modular form is denoted by f = (fν) = (fν)ν∈ClK ∈Mn,l(K). Furthermore,
we define lK as the least common multiple of the orders of the groups det Γν ,
ν ∈ ClK, so that Mn,l(K) = Mn,l′(K) whenever l ≡ l′ (mod lK).

To prepare the global definition of modular forms, we need yet another
description of (Ω × GL2(Af ))/K. Let (gf , g∞) ∈ K × GL2(K∞) act from the
right and α ∈ GL2(K) from the left on Ω×GL2(A) by

(z, wf , w∞) 7→ (g−1
∞ z, αwfgf , αw∞g∞).

The map (z, wf , w∞) 7→ (w∞z, wf) induces a GL2(K)-equivariant bijection

(Ω×GL2(A))/(K ×GL2(K∞)) −→ Ω×GL2(Af )/K.

We extend the xν to elements of GL2(A) by defining their component at∞ as the
identity. Thus the xν also form a set of representatives of GL2(K)\GL2(A)/(K×
GL2(K∞)). Finally, we set XK := Ω(C∞)×GL2(K)\GL2(A)/K.
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To f we associate a C∞-valued function f on Ω(C∞)×GL2(A) by

f(z, αxνw) :=
(
fν
∣∣∣∣
n,l

w∞

)
(z)

for z ∈ Ω(C∞), α ∈ GL2(K) and w = (wf , w∞). To see that this map is well-
defined, one needs the invariance property of fν under Γν from the definition
of a modular form. As GL2(K) does not act on Ω but only on GL2(A) via the
action defined above, the function f is a map from Ω(C∞)×GL2(K)\GL2(A)/K
to C∞. Clearly one can recover f from f via

fν(z) := f(z, xν). (25)

For w ∈ GL2(A), the function z 7→ f(z, w) is a holomorphic function from
Ω(C∞) to C∞. For g∞ =

(
a b
c d

)
∈ GL2(K∞), we define f

∣∣∣∣
n,l
g∞ by(

f
∣∣∣∣
n,l

g∞

)
(z, w) := f(g∞z, w)(det g∞)l(cz + d)−n,

and the right translation rg∞ by

rg∞f(z, wf , w∞) = f(z, wf , w∞g∞).

Definition 5.28 (Global Definition) An adelic modular function of level K,
weight n and type l is a map f : XK → C∞ which is holomorphic in the first
variable and satisfies

f
∣∣∣∣
n,l

g∞ = rg∞f for any g∞ ∈ GL2(K∞).

The above discussion shows that for fixed K, n, l there is a bijection between
adelic modular functions and modular functions for K. The C∞-vector space of
adelic modular forms is denoted Fn,l(K). One can use this correspondence to
define adelic modular forms, adelic cusp forms, etc., as follows: For w ∈ GL2(Af )
let Iw be the fractional almost-ideal of A defined by{

b ∈ K :
(

1 b
0 1

)
∈ GL2(K) ∩ wKw−1

}
.

Definition 5.29 An adelic modular function f is an adelic modular form, adelic
cusp form, adelic double cusp form if for all w ∈ GL2(Af ) the Laurent expansion

f(z, w, 1) =
∑
n∈Z

aneIw
(z)−n, (26)

which converges near the cusp (0 : 1), satisfies an = 0 for n < 0, n < 1, n < 2,
respectively.

The corresponding C∞-vector spaces are denoted Mn,l(K), Sn,l(K), S2
n,l(K),

respectively.

The main reason for introducing the global view point is that it facilitates the
discussion of Hecke operators to be given in the following section, and that it is
unlike the local definition free of any choices, like choosing the xν . We omit an
interpretation of modular forms for MK as sections of certain line bundles, as
it will not be needed in the sequel.

The following is immediate from the above discussion:

Proposition 5.30 There are natural isomorphisms

Mn,l(K) ∼= Mn,l(K) Sn,l(K) ∼= Sn,l(K) S2
n,l(K) ∼= S2

n,l(K).
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For an admissible subgroup K, let g(K) denote the sum over the genus of the
components of MK,Kalg . Let furthermore h(K) denote the number of cusps
of MK,Kalg , i.e., card(MK,Kalg r MK,Kalg). Also, let d(K) be the number
of connected components of MK,Kalg . Finally let sn(K) := dimSn,l(K) and
s2n(K) := dimS2

n,l(K). The previous proposition combined with Proposition 5.4
and Corollary 5.20 implies:

Corollary 5.31 If K is admissible, then sn(K) = (n− 1)(g(K) + h(K)− d(K))
and

s2n(K) =
{

g(K) if n = 2
(n− 2)(g(K) + h(K)− d(K)) + g(K)− d(K) if n > 2

While our local definition of modular form implies that the set of such is
equal if the type is changed by adding a multiple of lK, this is no longer the case
for the global description.

Lemma 5.32 Suppose l, l′ ∈ Z are congruent modulo lK. Then the assignment
f 7→ g given by

g(z, αxνw) := f(z, αxνw)(detw∞)l
′−l,

where α ∈ GL2(K), w = (wf , w∞) ∈ K ×GL2(K∞) and ν ∈ Cl(K), defines for
fixed K, n an isomorphism from the space of modular functions of type l′ to that
of type l. It restricts to isomorphisms

Mn,l(K) ∼= Mn,l′(K), Sn,l(K) ∼= Sn,l′(K), S2
n,l(K) ∼= S2

n,l′(K).

Remark 5.33 Choosing a sign-function, i.e., a homomorphism sign : K∗∞ →
k∗∞ which is the identity on k∗, one could define (f

∣∣∣∣
n,l
γ)(z) := f(γz)(cz +

d)n sign(det γ)l. Then the sets of global modular forms of types l, l′ would
automatically agree whenever l ≡ l′ (mod q∞ − 1). So at the expense of this
choice and various other somewhat less natural definitions, one could reduce
the amount of redundancy described in the previous lemma. As there seems to
be no definition that avoids this redundancy completely we opted for a simple
definition with lots of redundancy.

In the number theoretic case, one can avoid all this as taking the square root
and squaring are natural inverses for the positive real numbers. Over K∞ taking
square roots is no longer such a natural operation. To avoid its definition, types
are introduced.

5.6 Adelic harmonic cocycles

As in the local situation for Γ\Ω, we now turn to a reformulation in terms of
harmonic cocycles. The group GL2(K) acts on T ×GL2(Af )/K on the left by

α(t, gK) = (αt, αgK) α ∈ GL2(K).

Furthermore on T × GL2(K)\GL2(A)/K there is a right action by GL2(K∞)
defined as

(t,GL2(K)gK)g∞ = (g−1
∞ t,GL2(K)gg∞K) for g ∈ GL2(Af ), g∞ ∈ GL2(K∞).

The following identifications will be important∐
v∈ClK

Γν\T
∼=←− GL2(K)\(T ×GL2(Af )/K) (27)

∼=←−
(
T ×GL2(K)\GL2(A)/K

)
/GL2(K∞), (28)
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where the first map sends a tuple (t, αxνgf) to (α−1t) on the summand ν and
the second a tuple (t, wf , w∞) to (w∞t, wf), where t is a simplex of T , w∞ ∈
GL2(K∞), wf ∈ GL2(Af ) and α ∈ GL2(K).

Definition 5.34 Let R be a K∞-algebra. An adelic harmonic cocycle c of
weight n, type l and level K over R is a GL2(K∞)-invariant element c in

Maps(T o1 ×GL2(K)\GL2(A)/K, Vn,l(C∞))

such that

(i) for all vertices v of T , and all w ∈ GL2(A)∑
e∈T o

1 ,t(e)=v

c(e, w) = 0,

(ii) for all oriented edges e ∈ T o1 on has c(−e, w) = −c(e, w).

The R-module of all such adelic cocycles is denoted Char
n,l (K, R).

Note that we let GL2(K∞) act on Maps(T o1 ×GL2(K)\GL2(A)/K, Vn,l(C∞))
on the right, i.e., an element g∞ ∈ GL2(K∞) acts as

(cg∞)(e, w) = (g∞)−1
n,lc(g∞e, wg

−1
∞ ).

Using the isomorphisms (28) and (27), one can easily show the following.

Lemma 5.35 Let R be a K∞-algebra. For each tuple cν , ν ∈ ClK, of harmonic
cocycles of weight n and type l for Γν define

c(e, αxνw) := (w−1
∞ )n,lcν(w∞e)

for (e, αxνw) ∈ T o1 × GL2(K)\GL2(A)/K and w ∈ K × GL2(∞). Then this is
a bijection ∏

ν

Char
n,l (Γν , R) ∼= Char

n,l (K, R).

In particular Char
n,l (K, R) is finitely generated projective over R.

As in the local situation, we define a residue map

Res f : T o1 ×GL2(K)\GL2(A)/K → Vn,l(C∞)

which to a cusp form f of level K weight n and type l assigns

(Res f)(e, w)(XiYn−2−i) := Rese(−z)n−i−2f(z, w) dz for e ∈ T o1 , w ∈ GL2(A).

Lemma 5.36 The following diagram commutes

(fν)ν∈ClK
� //

_

��

f_

��
(cν := Res fν)ν∈ClK

� // c = Res f .

We omit the proof which is easy if tedious. Regarding the assignment f 7→ Res f ,
we note that the condition f

∣∣∣∣
n,l
g∞ = rg∞f for all g∞ ∈ GL2(K∞) translates

into the GL2(K∞)-equivariance of the map Res f .
Based on Theorem 5.10, the following is a direct consequence of our defini-

tions.
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Theorem 5.37 The assignment f 7→ Res f defines an isomorphism Sn,l(K) ∼=
Char
n,l (K,C∞).

Unlike for adelic Drinfeld modular forms, there is also a good description
of adelic harmonic cocycles as maps on the finite adeles only, i.e. on T o1 ×
GL2(Af )/K. The benefit of this description is, that it can be used to define
cusp forms over any ring which contains K.

Lemma 5.38 For any K∞-algebra R, there is a natural bijection

MapsGL2(K∞)(T o1 ×GL2(K)\GL2(A)/K, Vn,l(R))
∼= MapsGL2(K)(T o1 ×GL2(Af )/K, Vn,l(R)),

given by the following assignments. To an element c on the left, we attach an
element c̃ on the right by

c̃(e, wf) := c(e, wf , 1),

and to an element c̃ on the right, we attach an element c on the left by

c(e, wf , w∞) := (w∞)−1
n,l c̃(w∞e, wf).

Again we omit the details of the simple proof and only remark that an element
α ∈ GL2(K) acts on a map c̃ on the left via

(αc̃)(e, wf) = αn,l(c̃(α−1e, α−1wf)).

Definition 5.39 Let R be a K-algebra. An adelic harmonic cocycle c̃ of weight
n, type l and level K over R is an element c̃ in

MapsGL2(K)(T o1 ×GL2(Af )/K, Vn,l(R))

such that

(i) for all vertices v of T and all g ∈ GL2(Af ),∑
e∈T o

1 ,t(e)=v

c̃(e, g) = 0.

(ii) for all oriented edges e ∈ T o1 and all g ∈ GL2(Af ), c̃(−e, g) = −c(e, g).

We write C̃har
n,l (K, R) for the R-module of all such cocycles.

Based on the previous lemma, it is simple to verify that this is a natural exten-
sion of Definition 5.34. This justifies that we call the elements of C̃har

n,l (K, R)
again adelic harmonic cocycles. The distinction will always be made in the
notation by putting a tilde or not.

The following proposition compares the above module with the projective
R-modules Char

n,l (Γν , R). The simple proof is left to the reader.

Proposition 5.40 For a tuple cν , ν ∈ ClK, of harmonic cocycles of weight n
and type l for Γν , define

c̃(e, αxνg) := αcν(α−1e)

for (e, αxνg) ∈ T o1 ×GL2(Af )/K and g ∈ K. For any K-algebra R, this yields
a bijection ∏

ν

Char
n,l (Γν , R) ∼= C̃har

n,l (K, R),

and so in particular C̃har
n,l (K, R) is finitely generated projective over R.
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As for adelic modular forms, one can easily prove the following.

Lemma 5.41 Suppose l, l′ ∈ Z are congruent modulo lK. Let R be a K-algebra.
Then the assignment c̃ 7→ c̃′ given by

c̃′(e, αxνg) := c̃(e, αxνg)(detα)l
′−l

defines for fixed K, n,R an isomorphism from Char
n,l′(K, R) to Char

n,l (K, R).

5.7 The adelic Steinberg module

We now assume that K is admissible. In particular, this implies that all Γν
are p′-torsion free, so that we can drop the index l. Our goal here is to define
cusp and double cusp forms forMK with coefficients over any A-algebra. To do
this, we will reformulate Definition 5.14 in adelic language, which needs various
preparations. The main point is that we want to obtain definitions which are
independent of various choices.

Define TK := T × GL2(Af )/K and Tν := T × {xνK} ∼= T for any ν ∈ ClK.
The i-simplices of TK are denoted by TK,i, the oriented edges by T oK,1, and
analogously for the Tν .

Definition 5.42 The stable i-simplices of TK, and Tν , respectively, are defined
as

T st
K,i := {(t, gK) ∈ TK,i : StabGL2(K)((t, gK)) is trivial.}

T st
ν,i := {t ∈ Tν,i : StabΓν

(t) is trivial.}

We often write t̃, ẽ, ṽ for simplices, edges and vertices of TK, respectively.
As T st

K,i =
⊕

ν IndGL2(K)
Γν

T st
ν,i for i = 0, 1, the Z[GL2(K)]-modules Z[T st

K,i] are
free and finitely generated. We use the notation Z[T o,stK,1] in the same way as in
Subsection 5.3, so that this module is isomorphic to Z[T st

K,1]. If we define the

map ∂K : Z[T o,stK,1]→ Z[T st
K,0] in analogy to (18), then the surjectivity of the ∂Γν

implies that of ∂K. Define StK by the short exact sequence

0 −→ StK −→ Z[T o,stK,1]
∂K−→ Z[T st

K,0] −→ 0. (29)

This sequence splits as a sequence of Z[GL2(K)]-modules as the object on the
right is free and hence projective. Because Z[T o,stK,1] is free and finitely generated
over Z[GL2(K)], one has:

Proposition 5.43 As a module over Z[GL2(K)], the group StK is finitely gen-
erated and projective. It is isomorphic to

⊕
ν IndGL2(K)

Γν
StΓν

.

In the local situation, cf. Definition 5.14, we were able to define ‘integral’
harmonic cocycles, i.e., cocycles with values R for any A-algebra R. By the
above proposition, for any K-algebra R there is an isomorphism

StK ⊗GL2(K) Vn(R) ∼=
⊕
ν

StΓν
⊗Γν

Vn(R) ∼=
⊕
ν

CSt
n (Γν , R).

This suggests the following definition in the global situation:

Definition 5.44 Let R be a flat A-algebra and define Λν := Â2x−1
ν ∩ K2. A

Steinberg cycle Φ of weight n, and level K over R is an element in the image of
the injective map⊕

ν

CSt
n (Γν ,Λν ⊗A R) −→ StK ⊗GL2(K) Vn(R⊗A K).
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The module of all such cycles is denoted CSt
n (K, R).

The submodule spanned by the image of
⊕

ν CSt,2
n (Γν ,Λν ⊗A R) is denoted

by CSt,2
n (K, R) and called the R-module of doubly cuspidal Steinberg cycles Φ

of weight n, and level K over R.

By their very definition, the modules CSt
n (K, R) and CSt,2

n (K, R) are finitely
generated and projective over R. By flatness of R over A, the canonical map⊕

ν

CSt,2
n (Γν ,Λν ⊗A R) −→ CSt,2

n (K, R)

is always an isomorphism.
In Definition 5.44, we used special representatives of GL2(K)\GL2(Af )/K,

namely the elements xν . For these we defined Γν-submodules Λν inside K2. In-
stead, we could take arbitrary coset representatives and define for g ∈ GL2(Af )
the group Γg := GL2(K) ∩ gKg−1 and the Γg-module Λg := Â2g−1 ∩K2. The
following proposition shows that the result is the same:

Proposition 5.45 The above definitions are independent of any choice of rep-
resentatives of GL2(K)\GL2(Af )/K.

At least for CSt
n (K, R), a short direct proof of the proposition can be given.

However, we prefer to first introduce some more general machinery, which will
also be useful later, and to then give the proof.

Definition 5.46 A local system W̄ = (W,Wg) of left (right) modules for
GL2(Af ) consists of a left (right) GL2(K)-module W and Γg-submodules Wg

for each g ∈ GL2(Af ), subject to the condition that for each g, g′ ∈ GL2(Af )
with g′ ∈ αgK, α ∈ GL2(K), one has

α(Wg) = Wg′ ((Wg)α−1 = Wg′).

Lemma–Definition 5.47 Let W̄ be a local system of left modules for GL2(Af )
and let W̄ ′ and Z̄ be local systems of right modules for GL2(Af ). Assume that
the natural map ⊕

g∈ClK
IndGL2(K)

Γg
Zg → Z

is an isomorphism for any choice of a set of representatives of ClK. Then the
following hold:

(a) The image of⊕
g∈ClK

(Zg ⊗Γg
Wg) −→ (Z ⊗GL2(K) W ), i ≥ 0,

denoted by Z̄⊗GL2(K) W̄ , is independent of the chosen representatives g of ClK.
If the Zg are projective over Z[Γg], then the above map is injective.

(b) The map⊕
g∈ClK

HomΓg
(Zg,W ′g) −→ HomGL2(K)(Z,W ′) i ≥ 0

is injective. The image is independent of of the chosen representatives g of ClK,
and is denoted by HomGL2(K)(Z̄, W̄ ′).

(c) Suppose the Wg are A[Γg]-modules which are finitely generated and pro-
jective over A and that W ∼= Wg ⊗A K. By W̄ ∗ we denote the system of
right modules defined by W ∗g := Hom(Wg, A), W ∗ := Hom(W,K), and where
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α ∈ GL2(K) acts on w∗ ∈ W ∗ by (w∗α)(w) = w∗(αw). Then the natural
isomorphism

HomGL2(K)(Z,W ∗) ∼= (Z ⊗GL2(K) W )∗

induces a perfect duality between the submodules

HomGL2(K)(Z̄, W̄ ∗) and Z̄ ⊗GL2(K) W̄ .

We omit the simple proof and give instead some examples.

Example 5.48 Fix an integer n ≥ 2 and an A-algebra R. In the applications,
W ′,W ′g will always be the local system of left GL2(Af )-modules defined as

W ′g = Symn−2(Hom(Λg,ΩA)⊗A R), W ′ := W ′g ⊗A K.

For W̄ we take system of right GL2(Af )-modules (W̄ ′)∗. Let us verify that
the conditions in (c) are satisfied for W̄ ′. By functoriality, it suffices to do this
for n = 3.

Suppose that g′ ∈ αgK for some α ∈ GL2(K). Then

Γg′ = GL2(K) ∩ g′Kg′−1 = GL2(K) ∩ αgKg−1α−1 = αΓgα−1, and

Λg′ = Â2g′
−1 ∩K2 = Â2g−1α−1 ∩K2 = (Â2g−1 ∩K2)α−1 = α ◦ Λg,

where we recall that we defined an action of GL2(K) on the modules Λg below
Proposition 4.10. Because αf = f ◦ α−1 for f ∈ Hom(Λg,ΩA), it follows easily
that W ′gα

−1 = W ′g′ .
It is now easy to check that W̄ = (W,Wg) satisfies the conditions of the

previous lemma, and for R = A also the conditions of c).

Example 5.49 For Z,Zg there will be various choices which satisfy the basic
assumptions of the previous lemma, namely:

(i) Z = Z[T st
K,i], Zg = Z[(Ti×{gK})st], for i = 0, 1, with the obvious GL2(K)

and Γg actions. Note that in this case, the Zg are free finitely generated
Z[Γg]-modules.

(ii) Z = Z[T o,stK,1 ], Zg = Z[(T o1 × {gK})st].

(iii) Z = StK, Zg = Ker(Z[(T o1×{gK})st] −→ Z[(T0×{gK})st]) again with the
usual actions of GL2(K) and Γg. The modules Zg are finitely generated
projective Z[Γg]-modules.

(iv) Z = Z[P1(K) × GL2(Af )/K] and Zg = Z[P1(K) × {gK}], where the
GL2(K)-action on P1(K) is the action on ends, and the action on GL2(Af )
is the usual left action.

(v) Z = Z[ClK], and Zg = Z[g], where g denotes the class of g. The action of
GL2(K) is trivial. Only the hypothesis for (a) hold.

(vi) In analogy to the complex in (20), one defines a complex which is quasi-
isomorphic to the adelic Steinberg complex and globally takes the shape

Z[T o,stK,1 ] −→ Z[T st
K,0]⊕ Z[T st

K,1]

with the boundary map defined as in (20). Locally it is given by C̃stΓg,•
,

where for given g, we identify T with T × {gK}. The corresponding
complex of local systems is denoted by CstK,•.

66



Proof of Proposition 5.45: The proof for CSt
n (K, R) is obvious from the above

lemma and the examples given. The proof for CSt,2
n (K, R) follows in the same

way by considering the commutative diagram

0

��

0

��⊕
ν CSt,2

n (Γν ,Λν ⊗A R)

��

// CSt,2
n (K, R⊗K)

��⊕
ν CSt

n (Γν ,Λν ⊗A R)

��

// StK ⊗GL2(K) Vn(R⊗K)

��⊕
ν Z[P1(K)]⊗Γν

Vn(Λν ⊗R) // Z[P1(K)×GL2(Af )/K]⊗GL2(K) Vn(R⊗K),

where both columns are exact, and where GL2(K) acts diagonally from the left
on P1(K) × GL2(Af )/K. The right hand column arises from the short exact
sequence

0 −→ StK
αK−→ Z[P1(K)×GL2(Af )/K]

degK−→ Z[ClK] −→ 0,

The latter can be derived by induction of groups from the analogous short exact
sequences in the local situation. Alternatively, one can prove a global analogue
of Proposition 5.16 and give a direct global definition of αK along the lines of
that for αΓ.

To an adelic harmonic cocycle c̃ of weight n and level K over a K-algebra
R, we attach the element

ΦK(c̃) :=
∑

(e,gK)∈GL2(K)\T o,st
K,1 /{±1}

[(e, gK)]⊗ c̃(e, g) ∈ Z[T o,stK,1]⊗GL2(K) Vn(R).

As in the local case, it is simple to see that ΦK(c̃) lies in fact in the submodule
StK ⊗GL2(K) Vn(R).

Proposition 5.50 For any K-algebra R, the assignment c̃ 7→ ΦK(c̃) defines
an isomorphism C̃har

n (K, R)→ StK ⊗GL2(K) Vn(R).

The proposition follows immediately from Propositions 5.11 and 5.40 and the
chain of isomorphisms above Definition 5.44.

Combining Theorems 5.19, 5.37 , and Proposition 5.30 with the above propo-
sition yields:

Theorem 5.51 The isomorphism Sn(K) ∼= CSt
n (K,C∞) given by ΦK ◦ ResK

induces an isomorphism between the subspaces S2
n(K) and CSt,2

n (K,C∞).

67



6 Hecke operators

We begin this section by abstractly defining a Hecke algebra HK corresponding
to an open subgroup K of GL2(Â). In a natural way a commutative subal-
gebra H(K,Y) is singled out. Furthermore, we also give a local definition of
such Hecke algebras avoiding adelic terminology. For these algebras we define
an action on modular functions, forms, etc., in their various incarnations, i.e.,
modular functions of level K, adelic harmonic cocycles and the Steinberg group.
At the heart of these definitions lies a geometric interpretation in terms of corre-
spondences, as is well-known in the number theoretic case. Again there is little
which is original here. The importance of double cusp forms seems to have been
noted first in [20]. It was remarked there that among the spaces of cusp forms
with higher vanishing order at the cusps, cf. [7] p. 171, precisely the spaces of
modular forms, cusp forms and double cusp forms are stable under the usual
Hecke action. Double cusp forms of weight two also played a prominent role
in [17].

6.1 Hecke algebras for compact-open subgroups of GL2(Af )

Let K be a compact open subgroup of GL2(Â). We equip the locally compact
group GL2(Af ) with a left-invariant Haar measure which is normalized in such
a way that

∫
K dg = 1. Because GL2 is uni-modular, the measure is also right

invariant. Due to the normalization, one has
∫
M
dg ∈ N for any K-bi-invariant

compact set M . Therefore we can define for any locally constant compactly
supported K-bi-invariant functions F,H on GL2(Af ) with values in A their
convolution product F ∗G by

(F ∗G)(h) :=
∫
F (hg−1)G(g) dg ∀h ∈ GL2(Af ).

Definition 6.1 By HK we denote the set of compactly supported K-bi-invariant
A-valued locally constant functions on GL2(Af ). Under pointwise addition and
convolution as multiplication this set is an A-algebra. HK is called the global
Hecke algebra for K.

Using the uni-modularity of the chosen Haar-measure, one shows that the con-
volution operation is associative. Let 1lKxK, x ∈ GL2(Af ), denote the character-
istic function on KxK. The elements 1lKxK, x ∈ GL2(Af ), form a basis of HK.
On such basis elements, the convolution operation can be described as follows.
Write KxK =

∐
Kxi and KyK =

∐
Kyj as disjoint unions. Then

1lKxK ∗ 1lKyK =
∑
i,j

1lKxiyj
. (30)

From now on, we will assume that K =
∏
Kp where Kp is a compact-open

subgroup of GL2(Ap). Then HK is the restricted tensor product ⊗′p∈Max(A)HKp ,
cf. [6], Ch. III, where HKp is the Hecke algebra of locally constant compactly
supported Kp-bi-invariant A-valued functions on GL2(Kp) under addition and
convolution. Because K is compact open, one has Kp = GL2(Ap) for almost all
p. As one knows that HGL2(Ap) is commutative, the possible non-commutativity
of HK stems from the finitely many exceptional local factors.

We are not so much interested in HK itself, but in a certain commutative
subalgebra, which we introduce now, following the treatment given in [52], §2.
The basic idea is to restrict the domain of the functions in HKp at the finitely
many exceptional places, so that the subalgebra generated by these functions
will be commutative (with respect to the convolution product).
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We first define various open subgroups of GL2(Kp). Let n be an ideal of
A (or Ap). Let us assume in the following definitions that x ∈ GL2(Ap) is the

matrix
(
a b
c d

)
. We define

K0,p(n) := {x ∈ GL2(Ap) : c ∈ nAp},
K1,p(n) := {x ∈ K0,p(n) : a− 1 ∈ nAp},
Kp(n) := {x ∈ K1,p(n) : b, d− 1 ∈ nAp}.

In particular, if p and n are relatively prime then K?,p(n) = GL2(Ap).

Definition 6.2 For ? ∈ {0, 1,∅} we define K?(n) :=
∏

pK?,p(n).

Depending on the open subgroup Kp of GL2(Ap), we will now define a Kp bi-
invariant semi-subgroup Yp of GL2(Kp). Recall that πp denotes a uniformizer
of Ap. There are three cases:

I) If Kp = GL2(Ap), then we define

Yp := M2(Ap) ∩GL2(Kp).

II) If Kp satisfies K1,p(pn) ⊂ Kp ⊂ K0,p(p) for some n ∈ N, then we define

Yp :=
⋃
m

Kp

(
1 0
0 πm

p

)
Kp.

Because Kp contains {
(

1 0
0 d

)
: d ∈ A∗p}, this definition is independent of

the choice of πp.

III) Finally, if Kp is of neither of the above types, we define Yp := Kp. Accord-
ing to the above three cases, we call Kp of type I, II and III, respectively.

Note that if K is admissible, then not all factors can be of type I or II.
Finally, we define Y as the restricted product of the Yp relative to the Kp. Then
Y is a semi-subgroup of GL2(Af ).

Definition 6.3 Let H(K,Y) denote the subalgebra of HK of functions whose
support lies in Y. We abbreviate H(K?(n),Y) by H?(n).

Remark 6.4 Regarding the local factor Yp for a group Kp of type II, there are
various things to note.

(i) Kp

(
1 0
0 πp

)
Kp is the disjoint union

∐
b∈kp
Kp

(
1 b
0 πp

)
.

(ii) Kp

(
1 0
0 πm

p

)
Kp =

(
Kp

(
1 0
0 πp

)
Kp

)m
.

(iii) Let Tpm denote 1l
Kp

„
1 0
0 πm

p

«
Kp

. Then one has Tpm ∗ Tpm′ = Tpm+m′ for

the convolution product.

To define a generating set for the Hecke algebras H(K,Y), we choose for
each fractional ideal m of A an element am ∈ (Af )∗ such that amÂ = mÂ in Af
and such that all components (am)p = 1 for p 6 |m.
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Definition 6.5 Let m be any ideal of A. By Tm(K) ∈ H(K,Y) we denote the
characteristic function on the compact K-bi-invariant subset

{y ∈ Y : det(y) = m}.

Furthermore, for any ideal m of A we define Sm(K) ∈ H(K,Y) by

Sm(K) :=
{

0 if m is not prime to the minimal conductor n of K
1lamK if m is prime to n

It is easy to see that Sm(K) is independent of the choice of am. When there is
no fear of confusion, we simply write Sm and Tm instead of Sm(K) and Tm(K).
Note that if m contains a prime p in its product expansion such that Kp is of
type III, then Tm(K) = 0.

As the elements of HK have coefficients in a field of characteristic p, the
usual relation for the product TmTn implies that

TmTn = Tmn for any ideals m, n.

This is strikingly different from the number field case, where the above only
holds for relatively prime ideals.

Proposition 6.6 The Hecke algebra H(K,Y) is commutative and generated by
the elements Tm(K) and Sm(K) where m runs through all ideals of A.

Proof: For the commutativity assertion, it suffices to consider the local com-
ponents above all non-zero primes p of A. If Kp is of type I, this is well-known,
cf. [6], Ch. IV. If Kp is of type II, this was noted in Remark 6.4. In the remaining
case, this is trivial.

To see that the Tm and Sm form a generating set, it suffices to show that the
local Hecke algebra above p is generated as a A-algebra by Tp and Sp. Again,
this follows from [6], Ch. IV, or Remark 6.4 or is trivial, respectively.

As with the description of modular forms either as hK = cardClK-tuples of
holomorphic functions on quotients Γν\Ω or as functions on GL2(K)\GL2(A)/K,
the above adelic description of the Hecke algebras H(K,Y) has a ‘local’ coun-
terpart in terms of double cosets for the arithmetic subgroups Γν of GL2(K).

For µ, ν ∈ ClK, define

Rµ,ν(K) := A[ΓµαΓν : α ∈ GL2(K) ∩ xµYx−1
ν ],

i.e., as the free A-module on certain double cosets of Γµ\GL2(K)/Γν . Note
that any double coset ΓµαΓν can be written as a disjoint union

∐
Γµαi of left

cosets of Γµ\GL2(K). Define R(K,Y) as the direct sum over all Rµ,ν(K), where
one should think of this as some kind of matrix algebra due to the following
definition of multiplication for elements in R(K,Y):

The product between elements of Rµ,ν(K) and Rµ′,ν′(K) is zero unless ν = µ′

and in this case it yields elements in Rµ,ν′(K). For ΓλαΓµ and ΓµβΓν choose
elements αi and βj such that

ΓλαΓµ =
∐

Γλαi and ΓµβΓν =
∐

Γµβj .

Then the multiplication Rλ,µ(K)×Rµ,ν(K)→ Rλ,ν(K) is defined by

[ΓλαΓµ] · [ΓµβΓν ] =
∑

m(α, β, γ)[ΓλγΓν ], (31)
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where the sum is over all double cosets ΓλγΓν such that
∐

ΓλγΓν = ΓλαΓµβΓν
and the m(α, β, γ) ∈ FFp

are defined as the reduction mod p of

card{(i, j) : Γλαiβj = Γλγ}.

One may verify that this definition is independent of any choices made and that
it defines an associative product on R(K,Y).

Finally we define a map ξ : H(K,Y) → R(K,Y) as follows. For y ∈ Y and
µ ∈ ClK write xνy−1 = α−1

y,µxµg ∈ GL2(K)xµK for some uniquely determined
ν = νy,µ, which depends on y and µ, and set

ξ(1lKyK) :=
∑
µ

[Γµαy,µΓνy,µ
]. (32)

Again this is independent of the chosen αy,µ.

Proposition 6.7 The map ξ : H(K,Y) → R(K,Y) is an injective ring homo-
morphism between commutative A-algebras.

Proof: We will only show that ξ is compatible with taking products and leave
the proofs of the other assertions to the reader. This we may verify on elements
of the form 1lKyK, y ∈ Y.

For such an element, write KyK =
∐
Kyj and define for each j and µ

elements νµ ∈ ClK and elements αµ,j ∈ GL2(K) such that

xνµ
y−1
j ∈ α−1

µ,jxµK.

Note that νµ is determined by the requirement that tµ det(y)t−1
νµ
∈ K∗ detK.

Let j0 be any of the j. Then it is easy to see that

Γµαµ,j0Γν =
∐

Γµαµ,j .

From equations (30) and (31), which describe the multiplication on basis ele-
ments for HK and R(Y,K), respectively, one can now see the asserted compat-
ibility of ξ with multiplication.

6.2 Hecke operators on modular forms

We now define an action of H(K,Y) on spaces of modular forms of level K. Fix
y ∈ GL2(Af ) and choose elements yj ∈ GL2(Af ) such that

KyK = qKyj . (33)

From now on, given y ∈ Y, elements yj will always denote left coset representa-
tives of KyK.

Definition 6.8 For a modular form f the operation of 1lKyK is defined as

f 7→ f|KyK : (z, wf , w∞) 7→
∑
j

f(z, wfy
−1
j , w∞).

If K is the level of f , then the individual functions f(z, wfy
−1
j , w∞) are in-

variant under GL2(K) × yjKy−1
j . A simple computation, which is left to the

reader, shows that f|KyK is again invariant under GL2(K)×K and moreover an
adelic modular form of level K.
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Proposition 6.9 (i) For y, y′ ∈ Y, the operation f 7→ f|KyK satisfies

(f|KyK)|Ky′K =
∑
j

f|Ky′′j K (34)

if the elements y′′j are defined so that 1lKyK ∗ 1lKy′K =
∑
j 1lKy′′j K. In

particular f 7→ f|KyK extends linearly to a right action of HK on the space
of modular functions of weight n, type l and level K.

(ii) The operation defined in (i) preserves the subspaces of modular forms,
cusp forms and double cusp forms.

(iii) Furthermore for K′ ⊂ K, the actions of H(K′,Y ′) ⊂ H(K,Y) on Sn,l(K)
and on the image of Sn,l(K) in Sn,l(K′) agree.

Before we prove this, we first recall a geometric interpretation of the Hecke
operator attached to KyK. Consider

XK∩yKy−1
ry //

π1

��

XK∩y−1Ky

π2

��
XK XK,

(35)

where the πi are the natural projections that arise from the inclusions K ∩
y−1Ky,K∩yKy−1 ⊂ K, and where ry is right multiplication by y ∈ GL2(Af ). By
π∗1 and r∗y−1 we denote the pullback of functions under π1 and ry−1 , respectively.
The map traceπ2 denotes the trace of the pushforward, i.e., traceπ2 assigns to
a function f on XK∩y−1Ky the function on XK whose value at a point x is the
sum of the values of f at all preimages of x. Then

f|KyK = traceπ2r
∗
y−1π∗1f = traceπ2ryπ

∗
1f .

Proof: Formula (34) easily follows from (30). That the operation f 7→ f|KyK
extends linearly to H(K,Y) is then easy to verify. We leave part (iii) to the
reader and now turn to the proof of part (ii).

To see that the operation of an element KyK preserves the subspaces of
modular forms, cusp forms and double cusp forms, it suffices to show this for
each of the maps (π1ry−1)∗, and traceπ2 . For the first, this is obvious. Thus we
now consider traceπ2f , and we let r ∈ {0, 1, 2} denote the vanishing order of f
at the cusps.

Let c be a cusp of XK and let c1, . . . , cs be the cusp above c under the map
π2. Let R be the local ring at c and Ri that at ci for i = 1, . . . , r. Let fi ∈ Ri
be the restriction of f to Ri and tracei the trace map from Ri to R. Then
traceπ2f =

∑
i traceifi when restricted to R. Therefore it suffices to verify the

claim for each of the maps tracei.
These trace maps are the usual trace maps for a finite flat morphism between

local rings. Furthermore, the maps R → Ri are totally wildly ramified and
Galois. In fact, the proof given in [15], VII.5, shows that the second higher
ramification group of R → Ri is trivial and that the first higher ramification
group is the whole decomposition group at ci. Therefore the assertion is a direct
consequence of the following lemma.
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Lemma 6.10 Let π : R → R′ be a Galois cover between complete discrete
valuation rings of characteristic p, which is totally wildly ramfied. Let m and
m′ be the respective maximal ideals. Assume that the second higher ramification
group is trivial and the first higher ramification group is the whole Galois group.
Then trace(m′r) ⊂ mr for r = 0, 1, 2.

Proof: For r = 0, 1, the assertion is trivial. So we now consider the case r = 2.
Let Gi denote the i-th higher ramification group (in lower indexing). Then by
[50], one has DR′/R = m′

t for the different of R′/R, where t =
∑∞
i=0(|Gi| − 1).

In the situation given, this yields DR′/R = m′
2(|G|−1), where G is the Galois

group of R′/R. Because the ring extension is totally wildly ramified, one has
m = m′

|G|, so that m2 = DR/R′m
′2. The above and the definition of the

discriminant now implies that

trace(m′2) = trace(m2D−1
R/R′) = m2trace(D−1

R/R′) ⊂ m2,

as claimed.

Remark 6.11 The above short proof we owe to R. Pink. Alternatively, one
can use the theory of Goss polynomials and an explicit computation to prove
the Proposition. These explicit computations can also be used to show that
triple cusp forms are not preserved under Hecke operators.

This is strikingly different from the classical case. There the local ramifi-
cation at the cusps is tame, and one can show that double cusp forms are not
preserved under the Hecke operators.

Remark 6.12 For y ∈ GL2(Af ), choose ν ∈ ClK and α ∈ GL2(K) such that
y ∈ αxνK. Let l and l′ be congruent modulo lΓ. Let f and f ′ be adelic modular
functions of level K weight n and type l and l′, respectively, such that f 7→ f ′

under the isomorphism of Lemma 5.32. Then under the same isomorphism one
has

f|KyK 7→ detαl−l
′
f ′|KyK.

Thus while the spaces Mn,l′(K), Sn,l′(K), etc., only depend on l′ modulo lK,
the Hecke actions defined above depend on l ∈ Z. However the eigenfunctions
for the action of H(K,Y) only depend on l (mod lK).

To be able to compare our definition with the more classical one, given in
[15], VIII, or [16], §7, we translate the above definition to modular forms given in
their local description. So suppose that f corresponds to the tuple of functions
f = {fν}ν∈ClK . We want to describe the local components of f|KyK, which we
denote by (f |KyK)ν , ν ∈ ClK.

Fix ν and y ∈ GL2(Af ). This determines a unique µ ∈ ClK such that
xνy

−1 ∈ GL2(K)xµK. Furthermore, choose elements α and αj in GL2(K)
such that xνy−1 ∈ α−1xµK and xνy

−1
j ∈ α−1

j xµK. By formula (25) and using
Definition 6.8 and the definition of f in terms of f on page 60 we have

(f |KyK)ν =
∑
j

fµ
∣∣∣∣
n,l

αj . (36)

If desired, one could use the dictionary between the local and global viewpoint
to directly define an action for a class [ΓµαΓν ] of R(K,Y) on tuples f and derive
from this the above definition of f|KyK.
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Example 6.13 Suppose A = k[T ] and K = K((T )). Then ClK is trivial. Given
a maximal ideal p 6= (T ), let pp be a generator of p such that pp ≡ 1 (mod T )

and consider y =
(
pp 0
0 1

)
. To compute the action of Tp = |KyK, let Ep be

the set of polynomials of degree less than deg p. Then

KyK = K
(
pp 0
0 1

)
q
∐
b∈Ep

K
(

1 b(1−pp)
0 pp

)
.

We use pp ≡ 1 (mod T ) since this implies that(
pp 0
0 1

)
≡
(

1 b(1−pp)
0 pp

)
≡
(

1 0
0 1

)
(mod T ),

and therefore can take for the αj the elements(
pp 0
0 1

)
and

(
1 b(1−pp)
0 pp

)
Thus we find

Tpf(z) = (f |KyK)(z)

=
(
f
∣∣∣∣
n,l

(
pp 0
0 1

))
(z) +

∑
b∈Ep

(
f
∣∣∣∣
n,l

(
1 b(p−1

p −1)
0 pp

))
(z)

= pl−np

(
pnpf(ppz) +

∑
b∈Ep

f((z + b(1− pp))/pp)
)
.

Suppose now further that f ∈ Sn,l(GL2(Â)). Then the last line simplifies to

pl−np

(
pnpf(ppz) +

∑
b∈Ep

f((z + b)/pp)
)
.

By Proposition 6.9 (iii), the Hecke operator Tp can also be computed via the
coset decomposition

GL2(Â)
(
pp 0
0 1

)
GL2(Â) = GL2(Â)

(
p′p 0
0 1

)
q
∐
b∈Ep

GL2(Â)
(

1 b
0 p′p

)
,

where p′p is the monic generator of p. If we furthermore use l = n − 1, we find
that

Tpf(z) = p′p
−1
(
p′p
n
f(p′pz) +

∑
b∈Ep

f((z + b)/p′p)
)
.

This can now be directly compared with the Hecke operator at p defined in
[16], (7.1), which we denote by T ′p. We take l = q and n = q + 1. Then on
Sq+1(K((T ))) one has

Tpf = (p′p)
−1T ′pf.

This means that one has the same Hecke eigenforms, however to different sys-
tems of Hecke eigenvalues.

6.3 Hecke operators on harmonic cocycles

The issue here is to translate the above definition of a Hecke operation on adelic
modular forms to an action on harmonic cocycles which is compatible with the
residue map. We fix a K∞-algebra R and a K-algebra R̃.
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Definition 6.14 For c in Char
n,l (K, R), c̃ in C̃har

n,l (K, R̃) and y in Y we define
c|KyK and c̃|KyK by:

c|KyK(e, wf , w∞) :=
∑
j

c(e, wfy−1
j , w∞),

c̃|KyK(e, wf ) :=
∑
j

c̃(e, wfy−1
j ).

Furthermore, for c := (cν) ∈ qνChar
n,l (Γν , R̃) corresponding to c̃, one defines

(c|KyK)ν(e) := c̃|KyK(e, xν) =
∑
j

(α−1
j )n,lcµ(αje),

if one has chosen αj such that xνy−1
j ∈ α−1

j xµK.

Using the isomorphism in Theorem 5.37 and the bijection in Lemma 5.38, it is
a simple matter to verify the following proposition:

Proposition 6.15 The isomorphisms

Sn,l(K)
∼=−→ Char

n,l (K,C∞) : f 7→ Res f ,

Char
n,l (K, R)

∼=−→ C̃har
n,l (K, R) : c 7→ c̃ and

C̃har
n,l (K, R̃)→ qνChar

n,l (Γν , R̃)

are Hecke-equivariant.

Example 6.16 We continue with Example 6.13 in order to express the Hecke
operation on harmonic cocycles given in their local description. So we assume
the set-up from loc. cit. Let c be the cocycle corresponding to f . The formula
at the end of Definition 6.14 together with formula (17), after Definition 5.9,
yields

pl+1−n
p (c|KyK)(e)

=
(
pp 0
0 1

)−1

c
((

pp 0
0 1

)
e
)

+
∑
b∈Ep

(
1 b(1−pp)
0 pp

)−1

c
((

1 b(1−pp)
0 pp

)
e
)
.

This may be used to compute the Hecke action on harmonic cocycles, as well
as eigenvalues and eigenforms, if one is in the situation of Example 6.13.

6.4 Hecke operators on the Steinberg module

Our next aim is to give an action of H(K,Y) on the Steinberg module StK,
compatible with the action on harmonic cocycles. As noted in the proof of [55],
inequality (3), pp. 504ff., while it is true that a harmonic cocycle is completely
determined by its values on the stable edges, its values on unstable edges are
in general not all zero. More precisely, the value of a cocycle on an unstable
edge is determined by the values on its ‘stable sources’. This observation is
important for the action given by y ∈ Y, cf. Diagram (35), because the set of
stable simplices for K∩y−1Ky is larger as that for K. Therefore, below we need
to recall the concept of sources.

In the following K will be admissible, so that all Γν are p′-torsion free.
We freely use the notation introduced when describing modular forms via the
Steinberg module. Also recall that given an arithmetic p′-torsion free group
Γ, below Definition 3.22 we had defined a map b : T∞ → P1(K) by sending
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a simplex t to εt[s] where [s] is the unique end such that Γt ⊂ Γs, εt is 1 if
t is a vertex or an edge pointing towards [s], and −1 otherwise. We define
bν as the corresponding map from the unstable simplices of Tν to the ends
of Tν . By b we denote the induced map from unstable simplices of TK to
the rational ends P1(K)K := P1(K) × GL2(Af )/K of TK. One can directly
characterize b, by saying that it maps a simplex t̃ := (t, gK) to εt̃[s̃] where
[s̃] = ([s], gK) ∈ P1(K) × GL2(Af )/K is the unique element such that for the
action of GL2(K), the stabilizer of t̃ is contained in the stabilizer of [s̃], and
such that εt̃ is in {±1} and determined in the same way as εt above.

Definition 6.17 For an edge ẽ of T oK, define its source, which is a subset of
T oK,1, as follows: If ẽ is stable, then src(ẽ) = {ẽ}. If ẽ is unstable, then src(ẽ) is
the set of all ẽ′ ∈ T o,stK,1 such that

(i) there exists an unstable vertex ṽ′ of ẽ′ such that ẽ lies on the half line from
ṽ′ to b(ṽ′) and

(ii) ẽ′ has the same orientation as ẽ (along that half line).

For ẽ ∈ T st
K,1 define its course as

crs(ẽ) := {ẽ′ ∈ T o,stK,1 : ẽ ∈ src(ẽ′)}.

Note that crs(ẽ), src(ẽ) and ẽ lie in the same connected component of T ×
GL2(Af )/K.

Translating Lemma 5.13, which is taken from [55], into an adelic context,
one obtains the following:

Lemma 6.18 Let c̃ be an element of C̃har
n,l (R). Then for all ẽ ∈ T oK,1 one has

c̃(ẽ) =
∑

ẽ′∈src(ẽ)

c̃(ẽ′) =
∑

ẽ∈crs(ẽ′)

c̃(ẽ′).

To define a Hecke action on StK, we first define actions on Z[T st
K,0] and on

Z[T o,stK,1 ]. For this we choose elements y′j such that∐
y′jK = KyK. (37)

Definition 6.19 For y ∈ Y, (v, gK) ∈ T st
K,0 and ẽ ∈ T o,stK,1 define

[(v, gK)]|KyK :=
{ ∑

j [(v, gy
′
jK)] for (v, gK) ∈ T st

0 ,

0 otherwise.
∈ Z[T st

K,0]

[ẽ]|KyK :=
∑

(e′,g′K)∈crs(ẽ)

(∑
j

[(e′, g′y′jK)]
)
∈ Z[T o,stK,1 ],

where [(e′, g′y′jK)] = 0 whenever (e′, g′y′jK) is unstable.

Let us first explain why the sum defining [ẽ]|KyK is finite. For this, we fix j.
The elements (e′, g′K) in crs(ẽ) form

(i) the one element set {ẽ}, if both vertices of ẽ are stable,

(ii) a half line starting at ṽ0 whose equivalence class is a rational end, if
precisely one vertex of ẽ, namely ṽ0, is unstable,

(iii) a line from one to another rational end which contains ẽ, if both vertices
of ẽ are unstable.
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Therefore the elements {(e, gy′jK) : (e′, g′K) ∈ crs(ẽ)} form a translate of either
of the above sets, of precisely the same shape. But each half line going to a
rational end contains only a finite number of stable edges, and thus the sum is
finite as asserted.

The following result is obvious and left to the reader:

Lemma 6.20 The action |KyK on Z[T o,stK,1 ] induces an action on Z[T o,stK,1].

The induced action is again denoted by [ẽ] 7→ [ẽ]|KyK. By linearity, the above
definitions extend to left actions of H(K,Y) on Z[T st

K,0], Z[T o,stK,1 ] and Z[T o,stK,1].
The next lemma shows that these are compatible with the boundary map ∂K:

Lemma 6.21 For m ∈ Z[T o,stK,1] one has

∂K(m|KyK) = (∂Km)|KyK.

In particular one obtains an induced action of H(K,Y) on StK.

Proof: To prove the lemma, it suffices to prove for each ẽ = ṽṽ′∈
−→
T o,stK,1 and

each j that

∂K
∑{

[(e, gy′jK)] : (e, gy′jK) ∈ T st,o
K,1 , (e, gK) ∈ crs(ẽ)

}
= [(v′, gy′jK)]− [(v, gy′jK)], (38)

where ṽ = (v, gK) and ṽ′ = (v′, gK), and where we require that the coset
representative g is fixed for all symbols.

If both, ṽ and ṽ′, are stable, then crs(ẽ) = {ẽ} and the assertion is obvious.
Let us now assume that ṽ′ is stable and ṽ isn’t. Then the elements in l :=
{(e, gy′jK) : (e, gK) ∈ crs(ẽ)} are the translate of the union of ẽ with the edges
on the half line s from ṽ to b(ṽ). Let ṽ0 := (v, gy′jK) be the initial point of
l and define w̃0, ṽ1, w̃1, . . . , ṽm, w̃m as the unstable vertices of s such that the
segment between ṽi and w̃i consists entirely of stable edges and such that the
union of these segments is the set of all stable edges on l. If the edge adjacent
to ṽ0 is unstable, then we have w̃0 = ṽ0. The vertex ṽ0 may or not be stable.

If one applies ∂K to the sum of the edges of l which are in the segment between
ṽi and w̃i for i > 0, then the result is zero because the sum is telescoping. For
i = 0, the sum equals [ṽ0]. Because ṽ is stable, the component of ṽ|KyK for given
j is precisely [(v, gy′jK)], i.e. [ṽ0]. Thus the assertion is proved in this case as
well. Finally, the case that both ends are unstable is similar to the previous one
and left to the reader.

For any Z[GL2(K)]-module V , we define an action of H(K,Y) on StK⊗GL2(K)V
by having y ∈ Y act as |KyK ⊗ id.

Proposition 6.22 For any K-algebra R, the isomorphism Φ : C̃har
n (K, R) →

StK ⊗GL2(K) Vn(R) of Proposition 5.50 is Hecke-equivariant.

We consider the complex

Z[TK,•] : . . . −→ 0 −→ Z[T oK,1]
∂−→ Z[TK,0] −→ 0 −→ . . . ,
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where the symbol of a simplex (t, gK) is denoted by {(t, gK)}. Clearly there is
a commutative diagram

Z[T oK,1]

��

∂ // Z[TK,0]

��
Z[T o,stK,1]

∂K // Z[T st
K,0],

where the vertical maps are given by mapping a symbol {(t, gK)} to the symbol
[(t, gK)]. This map is denoted by [ ].

We leave the proof of the following simple lemma, which uses Proposi-
tion 5.50 for the second assertion, to the reader:

Lemma 6.23 The map which sends a harmonic cochain c̃ to∑
(e,gK)∈GL2(K)\T o

K,1/{±1}

{(e, gK)} ⊗ c̃(e, gK) ∈ Z[T oK,1]⊗GL2(K) Vn(R)

defines an isomorphism C̃har
n (K, R) → H1(Z[TK,•] ⊗GL2(K) Vn(R)). Further-

more, the map [ ] induces an isomorphism

H1(Z[TK,•]⊗GL2(K) Vn(R)) −→ StK ⊗ Vn(R),

such that the composite map is the map given in Proposition 5.50.

We define a Hecke action on Z[TK,•], by having KyK map the symbol
{(t, gK)} to

∑
j{(t, gy′jK)}. The following is the first stage in the proof of

Proposition 6.22.

Lemma 6.24 If the action of KyK on Z[TK,•] ⊗GL2(K) Vn(R)) is defined as

|KyK⊗id, then the map C̃har
n (K, R)→ H1(Z[TK,•]⊗GL2(K)Vn(R)) of the previous

lemma is a Hecke equivariant isomorphism.

Proof: The lemma is a consequence of the following calculation:∑
(e,gK)∈GL2(K)\T o

K,1/{±1}

{(e, gK)} ⊗ (c̃|KyK)(e, gK)

=
∑

(e,gK)∈GL2(K)\T o
K,1/{±1}

∑
j

{(e, gK)} ⊗ c̃(e, gy−1
j K)

‘
y−1

j K=Ky−1K
=

∑
(e,gK)∈GL2(K)\T o

K,1/{±1}

∑
hK⊂gKy−1K

{(e, gK)} ⊗ c̃(e, hK)

h∈gKy−1K⇔g∈hKyK
=

∑
(e,gK)∈GL2(K)\T o

K,1/{±1}

∑
gK⊂hKyK

{(e, gK)} ⊗ c̃(e, hK)

=
∑

(e,hK)∈GL2(K)\T o
K,1/{±1}

∑
j

{(e, hy′jK)} ⊗ c̃(e, hK)

=
∑

(e,hK)∈GL2(K)\T o
K,1/{±1}

{(e, hK)}|KyK ⊗ c̃(e, hK).
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Proof of Proposition 6.22: We may apply the above lemma to the first isomor-
phism given in Lemma 6.23. Therefore to prove the proposition, it remains to
show that the map in Lemma 6.23 induced from [ ] is Hecke-equivariant, i.e.,
we have to show that |KyK ◦ [ ] = [ ] ◦ |KyK. We have on the one hand

[ ] ◦ |KyK
( ∑

(e,gK)∈GL2(K)\T o
K,1/{±1}

{(e, gK)} ⊗ c̃(e, gK)
)

= [ ]
( ∑

(e,gK)∈GL2(K)\T o
K,1/{±1}

∑
j

{(e, gy′jK)} ⊗ c̃(e, gK)
)

=
∑

(e,gK)∈GL2(K)\T o
K,1/{±1}

∑
{j:(e,gy′jK)∈GL2(K)\T st,o

K,1 }∑
(e,gK)∈crs(e′,gK)

[(e, gy′jK)]⊗ c̃(e′, gK)

and on the other

|KyK ◦ [ ]
( ∑

(e′,gK)∈GL2(K)\T o
K,1/{±1}

{(e′, gK)} ⊗ c̃(e′, gK)
)

=
∑

(e′,gK)∈GL2(K)\T st,o
K,1 /{±1}

[(e′, gK)]|KyK ⊗ c̃(e′, gK)

=
∑

(e′,gK)∈GL2(K)\T o
K,1/{±1}

∑
(e,gK)∈crs((e′,gK))∑

{j:(e,gy′jK)∈GL2(K)\T st,o
K,1 }

[(e, gy′jK)]⊗ c̃(e′, gK).

This concludes the proof of Proposition 6.23.

We also record the following compatibility, which is a consequence of Propo-
sitions 6.15 and 6.22, and Theorem 5.51:

Proposition 6.25 The isomorphism S2
n(K) ∼= CSt,2

n (K,C∞) given by ΦK◦ResK
is Hecke-equivariant.

Finally, we state the following result on integral harmonic cochains, which
will eventually be proved in Subsection 13.2 as a corollary to our Eichler-Shimura
isomorphisms, Theorems 10.3 and 12.3, and their compatibility with the Hecke-
operation, Theorem 13.2.

Proposition 6.26 The submodules

CSt,2
n (K, A) ⊂ CSt

n (K, A)

of CSt
n (K,K) are stable under the action of H(K,Y).
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7 Crystals over function fields

Throughout this section, we fix a morphism f : Y → X of noetherian schemes
X, Y over Spec k and an open immersion j : U → X with closed complement
i : Z → X and ideal sheaf I of Z. The aim is to recall the relevant notions
and facts from [4]. For a more detailed account of the theory of τ -sheaves and
crystals, we refer to loc. cit. We also fix a k-algebra B essentially of finite type
over k. Also recall that σ is the Frobenius on X, Y , . . . , relative to k.

7.1 Basic definitions

Definition 7.1 A τ -sheaf over B on a scheme X is a pair F := (F , τF ) con-
sisting of a quasi-coherent sheaf F on X × SpecB and an OX×SpecB-linear
homomorphism

(σ × id)∗F τ // F .

The τ -sheaf F is called coherent if F has this property.

We often simply speak of τ -sheaves on X. The sheaf underlying a τ -sheaf F
will always be denoted F . When the need arises to indicate on which sheaf τ
acts, we write τ = τF .

On any affine chart SpecR ⊂ X a τ -sheaf over B corresponds to a finitely
generated R ⊗ B-module M together with a σ ⊗ id-linear homomorphism τ :
M →M . We will occasionally use the notation (M, τ) and call it a τ -module.

By QCohτ (X,B) we denote the category whose objects are the τ -sheaves
on X over B, and whose morphisms are those sheaf homomorphisms which
are compatible with τ . The full subcategory of coherent τ -sheaves is denoted
Cohτ (X,B). With the obvious definitions of kernel, cokernel, image and coim-
age, Cohτ (X,B) and QCohτ (X,B) are abelian B-linear categories.

For a τ -sheaf F , we define the iterates τn of τ by setting inductively τ0 := id
and τn+1 := τ ◦ (σ × id)∗τn : (σn+1 × id)∗F −→ F .

Definition 7.2 A τ -sheaf F is called nilpotent if and only if τnF vanishes for
some n > 0.

A morphism of coherent τ -sheaves is called a nil-isomorphism if and only if
both its kernel and cokernel are nilpotent.

Proposition 7.3 A homomorphism of coherent τ -sheaves ϕ : F → G is a nil-
isomorphism if and only if there exist n ≥ 0 and a morphism of τ -sheaves α
making the following diagram commute:

(σn × id)∗F τn
//

(σn×id)∗ϕ

��

F

ϕ

��
(σn × id)∗G

α

::tttttttttt
τn

// G.

It is shown in [4], Chap. 2, that the nil-isomorphisms in Cohτ (X,B) form a
saturated multiplicative system, denoted by S. One can thus make the following
definition.

Definition 7.4 The category Crys(X,B) of B-crystals on X is the localization
of Cohτ (X,B) with respect S.

Thus the category of crystals is obtained from that of coherent τ -sheaves by
‘formally inverting all nil-isomorphisms’.
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If the need arises to distinguish different kinds of morphisms, we use the fol-
lowing convention. Dotted arrows // indicate homomorphisms in Crys(X,B),
solid arrows −→ denote homomorphisms in QCohτ (X,B) and double arrows
=⇒ denote nil-isomorphisms in QCohτ (X,B). Mostly however, we use −→
in all three cases. In particular, any morphism F // G in Crys(X,B) is
represented by a diagram F ⇐= H → G in Cohτ (X,B).

For a τ -sheaf F on X over B, we define Fτ := Γ(X × SpecA,F)τ as the B-
module of τ -invariant global sections of F . The following result is an immediate
consequence of the above definitions.

Proposition 7.5 The functor F 7→ Fτ from Cohτ (X,B) to B-modules is in-
variant under nil-isomorphisms and passes therefore to a functor on Crys(X,B),
which is again denoted F 7→ Fτ .

Proposition 7.3 provides us with a standard presentation for morphisms of
B-crystals:

Proposition 7.6 Any morphism ϕ : F // G in Crys(X,B) can be represented
for suitable n by a diagram

F τn

⇐= (σn × id)∗F −→ G.

We call a τ -sheaf F (locally) free, if its underlying sheaf F is (locally) free.
We call a crystal (locally) free, if it may be represented by a (locally) free τ -sheaf.

We now give some examples which are explained in greater detail in [3]:

Example 7.7 (a) An A-motive on X of rank r is a pair (M, charM) where
M ∈ Cohτ (X,A) is locally free of rank r and charM : X → SpecA is a
morphism of schemes such that the following conditions hold:

(i) The sheaf Coker((σ × id)∗M τ→ M) vanishes on the complement of the
graph of charM inside X × SpecA.

(ii) For every geometric point ix̄ : x̄ ↪→ X, so that x̄ is the spectrum of an
algebraically closed field, the τ -sheaf i∗x̄M is a Drinfeld-AndersonA-motive
of rank r in the sense of [41], Def. 5.1.

The pair (M, charM) is also referred to as a family of A-motives on X of rank
r, and charM is called the characteristic of M.

(b) Let ϕ := (ϕ,L) be a Drinfeld-A-module of rank r on an A-scheme X.
The pair (ϕ,L) defines an A-motive on X of rank r in the following way. Denote
by τ ′ ∈ EndG/X(Ga,X) the Frobenius on Ga,X relative to k. Define

M(ϕ) := HomG/X(L,Ga,X).

This is naturally a quasi-coherent sheaf of OX -modules. The action of a ∈ A is
defined as right composition with ϕ(a), and the action of τ as left composition
with τ ′. This defines an OX ⊗ A-linear map τ : M(ϕ) → (σ × id)∗M(ϕ), i.e.,
it makes (M(ϕ), τ) into a τ -sheafM(ϕ). The sheafM(ϕ) is in fact locally free
of rank r on X × SpecA, cf. [11].

The characteristic of ϕ, or ofM(ϕ), is the structure morphism charϕ : X →
SpecA which makes X into an A-scheme. Equivalently, charϕ is the morphism
of schemes corresponding to the ring homomorphism

A→ EndOX
(Lie(L)) ∼= Γ(X,OX)
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induced by ϕ, where Lie(L) is the tangent space to L along the zero section
and canonically isomorphic to L. The pair (M(ϕ), charϕ) is an A-motive of
rank r. The verification of condition (ii) is given in [1], (0.2), (0.3), (0.4). The
verification of (i) is an easy consequence.

Further examples are provided in the following section by a) the τ -sheaf attached
to a pure Drinfeld-Anderson motive, cf. Definition 9.1, and b) the A-motive
associated to an A-module, cf. 9.9.

Definition 7.8 For an admissible K, we define the τ -sheaf attached to the uni-
versal Drinfeld-module ϕK as FK :=M(ϕK).

7.2 Functors

This subsection is somewhat informal and mainly serves to fix some notation
and recall some results from [4], § 2, 3. For a survey in the case where B is
regular, one may also consult [3], § 1. Note also that in Section 8 some of the
quoted results are presented in greater detail in an analytic context.

On the category of quasi- and coherent τ -sheaves, one can define a functor f∗

for any f , and functors Rif∗ for proper f and i ≥ 0. On the underlying sheaves
these functors are defined in the usual way, as for instance in Hartshorne, [26].
In both cases, the functoriality of f∗ and Rif∗ yields a canonical choice for
τ . (To define Rif∗ on the category of quasi-coherent τ -sheaf the properness
hypothesis is unnecessary.) In [4], all these functors are developed in a suitable
derived context and it turns out a posteriori that on τ -sheaves they yield the
functors Rif∗ defined above.

Proposition 7.9 If f is proper, the functor f∗ is left adjoint to f∗. In partic-
ular, one has an adjunction morphism

id
adj−→ f∗f

∗.

If f is finite flat, then there is a trace map f∗f
∗ trace−→ id, which is defined

locally for Y = SpecS, X = SpecR and a τ -module M as

traceS/R ⊗ idM : S ⊗RM →M

with the induced τ , and where traceS/R is the usual trace map for the finite flat
ring S over R. Because traceS/R is zero for inseparable morphism R → S, one
has the following lemma, which we state for later use.

Lemma 7.10 If f is inseparable and finite flat, then trace : f∗f∗ → id is the
zero map.

One also defines the bi-functor ⊗, which gives the tensor product of τ -
sheaves, and ⊗BB′ for any morphism h : B → B′, which may be regarded as
change of coefficients. These functors have higher left derived functors. We
single out a certain class of acyclic objects.

Definition 7.11 A τ -sheaf F is called of pullback type if there exists a coherent
sheaf F0 on X such that F ∼= pr∗1 F0.

A crystal is called of pullback type, if it can be represented by a τ -sheaf of
pullback type.

In particular, if X is affine, then any locally free crystal is of pullback type.
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Lemma 7.12 Crystals and τ -sheaves of pullback type are acyclic for the func-
tors ⊗ and ⊗BB′.

In [4], the notion of flat crystals is developed. It gives a general framework for
acyclic objects for ⊗ and ⊗BB′. For simplicity, and because this will suffice for
most of our purposes, we do not introduce the more general notion.

The one-object for ⊗ is denoted 1lX,B . Its underlying sheaf is OX×SpecB ,
the morphism

τ : (σ × id)∗OX×SpecB −→ OX×SpecB

is the isomorphism underlying σ × id. The object in Crys(X,B) represented
by 1lX,B is called the unit crystal on X over B.

For a coherent τ -sheaf F , we also define Symn F and
∧n F , the n-th sym-

metric and exterior powers of F . The construction on the underlying sheaf is as
in [26], Ex. II.5.16, and again there is a canonical choice for τ . Note that both
Symn F and

∧n F are defined as quotients of F⊗n.
Our main examples of τ -sheaves will be families of A-motives, so it is natural

to ask when tensor products, symmetric and exterior powers are again families
of A-motives. The key to this is purity, and the precise results will be given in
Subsection 9.1.

It is not difficult to see that the functors f∗, Rif∗, ⊗, Symn,
∧n and ⊗BB′

are compatible with localization at nil-isomorphisms and hence they induce
functors on the category of crystals.

The following theorem summarizes some results that hold in Crys(X,B)
but not necessarily in Cohτ (X,B).

Theorem 7.13 (i) The functor f∗ : Crys(X,B)→ Crys(Y,B) is exact.

(ii) A crystal on X is zero if all its stalks are zero. If X is of finite type over
a field, then it suffices that all the stalks at closed points of X are zero.

(iii) There exists a functor j! : Crys(U,B)→ Crys(X,B), called extension by
zero, which is uniquely characterized by the properties j∗j! = idCrys(U,B)

and i∗j! = 0.

(iv) If F ∈ Crys(U,B) is of pullback type, then so is j!F . Also if G ∈
Crys(Y,B) is of pullback type, then so are the Rif∗G for proper f .

The characterization of j! directly implies that a sufficient condition for a given
τ -sheaf F̃ on X to represent j!F for some τ -sheaf F on U , is that j∗F̃ = F
and i∗F̃ is nilpotent. This indicates how to construct j! for F ∈ Cohτ (U,B)
regarded as a crystal:

Take any coherent sheaf F̃ on X × SpecB, whose restriction to U × SpecB
agrees with F . One verifies that for n � 0, the morphism τF extends to a
morphism

τ : (σ × id)∗InF̃ −→ InF̃

such that the restriction of τ to i∗InF̃ is nilpotent. The resulting τ -sheaf will
then represent j!F .

Definition 7.14 (Cohomology with compact supports) Say f is compac-
tifiable, i.e., f = f̄ j for some f̄ : Ȳ → X which is proper and some j : Y → Ȳ
which is an open immersion. Then one defines

Rif! := Rif̄∗ ◦ j! : Crys(Y,B) −→ Crys(X,B).
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Standard arguments show that the definition is independent of the chosen fac-
torization, e.g. [38], Ch. VI, §3. Furthermore, due to a result of Nagata, any
morphism f : Y → X between schemes of finite type over k is compactifiable,
and so in this situation the Rif! exist, cf. [37]. The previous theorem also
implies:

Proposition 7.15 If F ∈ Crys(Y,B) is of pullback type, then so are the Rif!F
for any morphism f .

7.3 Relations with the étale site

For this subsection we assume that B is a finite k-algebra. Let Ét(X,B) be
the category of étale sheaves of B-modules and Étc(X,B) its full subcategory
of constructible sheaves.

Let pr1 : X × SpecB → X be the projection onto the first factor. For a
coherent τ -sheaf F , the sheaf pr1∗ F is quasi-coherent on X, and we denote by
Ff the associated étale sheaf, cf. [38], p. 48. There is a canonical isomorphism

(σ × id)∗F
˜

→ Ff of étale sheaves of B-modules, because σ is the identity on

the topological space underlying X. By composing this isomorphism with the
map on the étale site induced from the adjoint τ# : F → (σ × id)∗F of τ , one
obtains an endomorphism τét : Ff → Ff on the étale site.

Definition 7.16 We define F ét := Ker(1 − τét : Ff → Ff ). This assignment

yields a functor
Cohτ (X,B)→ Ét(X,B) : F 7→ F ét.

Generalizing Artin-Schreier theory, the following is proved in [30], Thm. 4.1.1:

Theorem 7.17 The functor F 7→ F ét defines an equivalence between the cat-
egories {F ∈ Cohτ (X,B) : τF is an isomorphism} and {F ∈ Étc(X,B) :
F is locally constant} and there is an explicit functor P ét

τ which defines an in-
verse.

In [4], § 8, this is further elaborated. The following theorem summarizes the
main results:

Theorem 7.18 The functor F 7→ F ét maps nil-isomorphisms to isomorphisms,
i.e., it factors via Crys(X,B). Its image lies in Étc(X,B). The induced functor

ε : Crys(X,B)→ Étc(X,B)

is an equivalence of categories. Finally the functor ε is compatible with any of
the functors f∗, ⊗, ⊗BB′, Symn,

∧n and Rif!.

In analogy to the unit crystal, we define 1l étX,B as the constant étale sheaf on
X with B-coefficients.

The main example to keep in mind is the following: Let ϕ : A→ R{τ} be a
Drinfeld module of rank r, where R is a normal noetherian ring over k, and fix
a non-zero proper ideal n of A. Define ϕ[n](S) for any morphism u : R→ S by

ϕ[n](S) := {f ∈ S|∀a ∈ nϕa : f = 0}.

One easily checks that ϕ[n] defines a sheaf on the big étale site of affines over
SpecR, the sheaf of n-torsion points of ϕ. Note that the functor ϕ[n] is compat-
ible with direct limits. Finally define (M, τ) as the τ -module whose associated
τ -sheaf is F := M(ϕ). The following result is modeled after, [1], Prop. 1.8.3,
where Anderson proves it in the case where R is a separably closed field.
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Proposition 7.19 Suppose the characteristic of ϕ is disjoint from n. Then
there is an isomorphism of étale sheaves

ϕ[n] ∼= Hom A((F/nF)ét, n−1ΩA/ΩA)

on the small étale site over SpecR, where n−1ΩA/ΩA is regarded as the constant
sheaf on SpecR.

Proof: Let u : R→ S be étale. Following Anderson, we define on Homk(A/n, S)
the structure of left S{τ} ⊗A-module by

(s · h)(ā) = s(h(ā)),
(a · h)(ā) = h(aā),

(τh)(ā) = (h(ā))q

for ā ∈ A/n, h ∈ Homk(A/n, S), s ∈ S and a ∈ A. With this definition, the
map

ϕ[n](S) −→ HomS{τ}⊗A(u∗F/nu∗F ,Homk(A/n, S))

e 7→ (m̄ 7→ (ā 7→ m̄(āe)))

for e ∈ ϕ[n](S), m̄ ∈ u∗F/nu∗F and ā ∈ A/n is well-defined and functo-
rial in u. Via the residue map Res∞ at ∞, one has a natural isomorphism
Homk(A/n, S) ∼= n−1ΩA/ΩA ⊗k S. The inclusion

(u∗F/nu∗F)τ ⊗k S ↪→ u∗F/nu∗F ,

which is again functorial in s, induces therefore a map of étale sheaves

ϕ[n] −→Hom A((F/nF)ét, n−1ΩA/ΩA) =: Fn. (39)

By the remark preceding the proposition, the latter map is an isomorphism
whenever S is a separably closed field. Because n is disjoint from the character-
istic of ϕ, both ϕ[n] and Fn are locally free of rank r over A/n. Hence the above
map, being an isomorphism for algebraically closed fields, is an isomorphism on
the étale site above SpecR.

The above proposition and the compatibility of ε with Symn applied to the
universal Drinfeld module ϕK immediately yield the following:

Corollary 7.20 Let K be admissible and n a non-zero ideal of A which is rel-
atively prime to the minimal conductor n′ of K. Then for any k ≥ 0, on MK
(regarded as a scheme over SpecA(n′)) there is a canonical isomorphism

Symn ϕK[n] −→ SymnHom A((FK ⊗A A/n)ét, n−1ΩA/ΩA).

Fix a place v of A. We introduce the étale realization of FK as follows.

Definition 7.21 For v prime to the minimal conductor n′ of K, the constructible
étale Av-sheaf F ét,v

K on SpecA(n′) is defined as the inverse limit system given
by

((FK/(pv)nFK)ét)n∈N.
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8 Analytic τ-sheaves and crystals

Throughout this section, let us fix a complete valued field (L, | |L), or for short
simply (L, | |), with K∞ ⊂ L ⊂ C∞. Rigid spaces are denoted by X, Y, etc. All
rigid spaces will be over L and all products are formed over L. If X is a scheme
over L, then by Xrig or Xrig

L , we denote the associated rigid space in the sense
of [5], § 9.3.4. By B we denote a ring that is essentially of finite type over k,
and by B a rigid analytic Stein domain over L, cf. [32]. Define B := Γ(B,OB).
The rings B and B will serve as coefficient rings. The main example is the one
where B = Spec(L⊗k B)rig.

The goal is to introduce two kinds of rigid analytic sites of τ -sheaves and
crystals. These will be needed in Subsection 9.2 to develop Anderson’s uni-
formizability machine on a rigid analytic base and not just pointwise. As in An-
derson, one can either have algebraic coefficients, in which case one has B = A,
or analytic coefficients, in which case B is either the ring of entire functions on
A := (L⊗A)rig or on the ‘unit disc’ DA of A, cf. Subsection 8.6.

We first introduce the rigid site with B-coefficients and redo some of the
results of the previous section for this site. In particular, we define the notions
of rigid τ -sheaf and rigid crystal and we introduce various functors for these. As
we want to use the results of this subsection merely as a ‘tool box’, we will not
attempt to develop the theory to its fullest. Therefore we do not discuss it in
a derived context, as was done in [4], but stay entirely within the framework of
coherent (rigid analytic) sheaves. Certain notions, however, are developed with
an eye toward generalizations to higher rank cases.

We then introduce a rigid site with B-coefficients. It is more of an auxiliary
nature, and so we neither need, nor do bother defining cohomological functors
for it. Finally, we define a functor from algebraic to rigid crystals and show that
it is compatible with all the relevant functors. We conclude with some remarks
on how to compute cohomology for proper rigid morphisms using Čech covers.

8.1 Basic definitions

For a rigid space X, we define by σX the Frobenius which acts on affinoid rings
as the q-power map. By σL,B, we denote the pullback of the Frobenius on L
along Spm B → SpmL, i.e., it acts as the q-power map on coefficients in L
and as the identity on variables of B. Finally σ̃B denotes the Frobenius of B
relative to L, which acts on points by mapping their coordinates to q-th powers.
In particular σB = σL,Bσ̃B.

We define σX/B := σX × σL,B, . The morphism σX/B will take the role
played by σ × id in the algebraic setting.

Definition 8.1 A rigid τ -sheaf over B on X is a pair F̃ := (F̃ , τF̃ ) consisting
of a coherent sheaf F̃ of OX×B-modules and an OX×B-linear homomorphism

(σX × σL,B)∗F̃
τF̃ // F̃ .

The corresponding category of rigid τ -sheaves over B is denoted C̃ohτ (X,B).
The morphisms are morphisms of the underlying sheaves, i.e., of sheaves of
OX×B-modules, which are compatible with the morphism τ . Let Bσ denote
the elements of B which are invariant under the Frobenius relative to k. Then
C̃ohτ (X,B) is an abelian Bσ-linear category, where kernel, cokernel, image and
coimage are defined as for the underlying category of sheaves.

Let j : U → X be an affinoid subdomain of X. Then by the restriction F̃ |U
of a rigid τ -sheaf F̃ on X to U, we mean the pullback under (j × idB)∗ of the
underlying sheaf, together with the morphism induced by τ .
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As in Section 7.1, we define the iterates τn and make the following definition.

Definition 8.2 A rigid τ -sheaf F̃ is called nilpotent if and only if for each
affinoid subdomain U of X, there exists an n > 0 such that the restriction of τnF̃
to U vanishes.

A homomorphism of rigid τ -sheaves is called a nil-isomorphism if and only
if both its kernel and cokernel are nilpotent.

Remark 8.3 An equivalent definition of nilpotence for a rigid τ -sheaf F̃ on X
is that there exists an admissible affine cover {Ui} of X such that for each i
there exists an ni ∈ N such that the restriction of τni

F̃ to Ui vanishes.

In particular, if X has a finite cover by affinoids, e.g., if X is proper, then F̃
is nilpotent if and only if there exists an n > 0 such that τnF̃ = 0.

The proof of [4], Prop. 2.3.8, applies verbatim to rigid τ -sheaves and yields
the following analogue of Proposition 7.3:

Proposition 8.4 Suppose that X has a finite cover by affinoids. Then a ho-
momorphism of rigid τ -sheaves ϕ : F̃ → G̃ on X over B, is a nil-isomorphism if
and only if there exist n ≥ 0 and a homomorphism of τ -sheaves α making the
following diagram commute:

(σnX/B)
∗F̃ τn

//

(σn
X/B)∗ϕ

��

F̃

ϕ

��
(σnX/B)∗G̃

α

<<yyyyyyyyyy
τn

// G̃.

Following the proofs of [4], Prop 2.3.5 and Lem. 2.3.6., one shows that the nil-
isomorphisms form a Serre subcategory of the category of all rigid τ -sheaves —
Note that one does not need Lemma 2.2.4 of loc. cit. Hence the nil-isomorphisms
in C̃ohτ (X,B) form a saturated multiplicative system, denoted by SB. One can
thus make the following definition.

Definition 8.5 The category C̃rys(X,B) of rigid B-crystals on X is the local-
ization of Cohτ (X,B) with respect to SB.

The proof of [4], Prop. 2.4.4, can be easily adapted to rigid τ -sheaves and
yields the following analogue of Proposition 7.6.

Proposition 8.6 Assume that X has a finite cover by affinoids. Then any
morphism ϕ : F̃ // G̃ in C̃rys(X,B) can be represented for suitable n by a
diagram

F̃ τn

⇐= (σnX/B)
∗F̃ −→ G̃.

8.2 Basic functors

Throughout this subsection we fix a morphism f : Y → X of rigid spaces. The
basic functors which we will introduce in this subsection are pullback, tensor
product, change of coefficients and proper pushforward. As a general rule, we
do not give proofs, unless they differ substantially from those in [4], § 3.
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Definition 8.7 (Pullback) For a rigid τ -sheaf F̃ on X over B denote by f∗F̃
the rigid τ -sheaf on Y consisting of (f×id)∗F̃ and the composite homomorphism

σ∗X/B(f × id)∗F̃
τ
f∗F̃ // (f × id)∗F̃ .

(f × id)∗σ∗X/BF̃
(f×id)∗τF̃

55llllllllllllll

For any homomorphism ϕ : F̃ → F̃ ′ we abbreviate f∗ϕ := (f × id)∗ϕ.

This defines a Bσ-linear functor f∗ : C̃ohτ (X,B) −→ C̃ohτ (Y,B), which
is clearly left exact. When f is flat, f∗ is exact. In general, its exactness is
governed by the associated Tor-objects Lif∗F̃ , cf. [4], § 3.

Proposition 8.8 (a) If F is nilpotent, then so are all Lif∗F .

(b) If ϕ is a nil-isomorphism, then so is f∗ϕ.

(c) The above functor on τ -sheaves induces a unique Bσ-linear functor between
abelian categories

f∗ : C̃rys(X,B) −→ C̃rys(Y,B).

(d) For any two morphisms Z
g−→ Y

f−→ X there is a natural isomorphism of
functors (fg)∗ ∼= g∗f∗, both on τ -sheaves and on crystals.

Our next aim is to show that, as in the algebraic setting, the functor f∗ on
B-crystals is exact.

Theorem 8.9 (a) For any rigid τ -sheaf F̃ on X and any i ≥ 1, the τ -sheaf
Lif

∗F̃ is nilpotent.

(b) The functor f∗ : Crys(X,B) −→ Crys(Y,B) is exact.

Proof: The assertions of the theorem are local in X and Y, and so we assume
that Y → X arises from a map of affinoids f̃ : R → S. We write M for the
R-module underlying F̃ . By the definition of affinoid, it follows that we can
factor f̃ as

R f̃1−→ R〈〈T1, . . . , Tn〉〉
f̃2−→→ S.

Since the first map is flat, we may assume that f̃ is a surjection, say with kernel
I. Finally note that it suffices to prove (a), as (b) is an immediate consequence.

For (a) observe that by the usual technique of dimension shifting, it is enough
to show that TorR1 (M,S) with the induced τ is nilpotent for any rigid τ -module
(M, τ). Because M is finitely generated, there exists a short exact sequence
0→ N → Rn →M→ 0 for a suitable n ∈ N and and a suitable R-module N .
We consider the four-term exact homology sequence that arises by tensoring it
with S ∼= R/I over R:

0 −→ TorR1 (M,S) ∼= (IRn∩N )/IN −→ N/IN −→ (R/I)n −→M/IM−→ 0.

By the Artin-Rees lemma, there exists m ∈ N such that for l� 0

τ l(IRn ∩N ) ⊂ Iq
l

Rn ∩N = Iq
l−m(ImRn ∩N ) ⊂ IN .

This shows that TorR1 (M,S) is nilpotent and therefore finishes the proof of the
theorem.
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Definition 8.10 (Tensor product) For any rigid τ -sheaves F̃ and G̃ on X

over B, we let F̃ ⊗ G̃ denote the rigid τ -sheaf consisting of F̃ ⊗OX×B
G̃ and the

composite homomorphism

σ∗X/B
(
F̃ ⊗ G̃

) τF̃⊗G̃ // F̃ ⊗ G̃.

(
σ∗X/BF̃

)
⊗
(
σ∗X/BG̃

) (τF̃ )⊗τG̃

66lllllllllllllll

With the usual tensor product of homomorphisms this defines a Bσ-bilinear
bi-functor

⊗ : C̃ohτ (X,B)× C̃ohτ (X,B) −→ C̃ohτ (X,B)

Its exactness properties are governed by the associated Tor-objects, cf. [4], § 3.

Proposition 8.11 (a) If F̃ or G̃ is nilpotent, then so is F̃ ⊗G̃ and Tori(F̃ , G̃)
for every i.

(b) If ϕ and ψ are nil-isomorphisms, then so is ϕ⊗ ψ.

(c) The above functor on τ -sheaves induces a unique Bσ-bilinear bi-functor

⊗ : C̃rys(X,B)× C̃rys(X,B) −→ C̃rys(X,B)

(d) The functor ⊗ is right exact in each variable.

Definition 8.12 We let 1̃lX,B denote the rigid τ -sheaf on X over B consisting
of the structure sheaf OX×B and the natural isomorphism

σ∗X/BOX×B
∼→ OX×B.

By 1̃lX,B we also denote the corresponding unit crystal on X over B.

The canonical isomorphism 1̃lX,B⊗G̃ ∼= G̃ allows us to view this as a unit object

in C̃rys(X,B).
The following compatibilities, both on rigid τ -sheaves and on rigid crystals,

are obvious by construction:

Proposition 8.13 (a) F̃ ⊗ (G̃ ⊗ H̃) ∼= (F̃ ⊗ G̃)⊗ H̃.

(b) f∗(F̃ ⊗ G̃) ∼= f∗F̃ ⊗ f∗G̃.

Definition 8.14 A rigid crystal F̃ on X is called locally free, if there exists an
admissible affinoid cover Ui = SpecRi of X and Vj = SpecSj of B such that for
each i, j the restriction F̃ |Ui×Vj

is representable by a τ -sheaf whose underlying
sheaf is associated to a projective module of finite rank over Ri ⊗k Sj.

Clearly locally free rigid crystals are acyclic for ⊗:

Proposition 8.15 Let F̃ be a locally free rigid crystal on X. Then the functor

⊗ F̃ : C̃rys(X,B) −→ C̃rys(X,B)

is exact.
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Definition 8.16 A rigid τ -sheaf F̃ ∈ C̃ohτ (X,B) is called of pullback type if
there exists a coherent rigid sheaf F̃0 on X for which F̃ = pr∗1 F̃0.

A rigid crystal is called of pullback type, if it can be represented by a rigid
τ -sheaf of pullback type.

Definition 8.17 For an ideal sheaf I on X and a rigid τ -sheaf F̃ we define IF̃
as the image of I⊗OX

F̃ → F̃ . The map τF̃ clearly induces a map σ∗X/B(IF̃)→
(IF̃), and the resulting rigid τ -sheaf is denoted IF̃ .

As in the algebraic case, one expects in fact that any rigid crystal of pullback
type is acyclic for ⊗, cf. Def. 8.16. We only provide the following result, which
is a direct consequence of Theorem 8.9 and its proof.

Proposition 8.18 Let I be an ideal sheaf on X. Then for any rigid τ -sheaf F̃
we have:

(a) The map (I1̃lX/B)⊗ F̃ → IF̃ is an nil-isomorphism.

(b) The rigid τ -sheaf Tori( , I1̃lX/CB) = 0 is nilpotent whenever i 6= 0.

Let h : B′ → B be a map of rigid spaces over L.

Definition 8.19 (Change of coefficients) For any rigid τ -sheaf F̃ on X over
B we let F̃⊗BB′ denote the τ -sheaf on X over B′ consisting of (id×h)∗F̃ together
with the composite homomorphism

σ∗X/B(F̃ ⊗B B
′)

τF̃⊗BB′ // F̃ ⊗B B′.

(σ∗X/BF̃)⊗B B′
(τF̃ )⊗BB′

66mmmmmmmmmmmmm

For any morphism ϕ : F̃ → F̃ ′ we write ϕ⊗B B′ for the induced morphism.

This defines a Bσ-linear functor

⊗B B′ : C̃ohτ (X,B) −→ C̃ohτ (X,B′).

Our notation is meant to emphasize the role of B and B′ as ‘rings’ of coefficients.
Again, ⊗BB′ is not necessarily an exact functor and one can define left derived
functors TorBi ( ,B′) to measure the deviation from exactness.

Proposition 8.20 (a) If F̃ is locally nilpotent, then so is F̃ ⊗B B′.

(b) If ϕ is a nil-isomorphism, then so is ϕ⊗ 1.

(c) The above functor on rigid τ -sheaves induces a unique Bσ-linear functor

⊗B B′ : C̃rys(X,B) −→ C̃rys(X,B′).

(d) The functors ⊗BB′ on rigid τ -sheaves and crystals are right exact.

Proposition 8.21 Let F̃ be a rigid crystal on X of pullback type. Then for any
h and any i > 0 one has TorBi (F̃ ,B′) = 0.

The following compatibilities, both on τ -sheaves and on crystals, are obvious
by construction:
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Proposition 8.22 (a) f∗(F̃ ⊗B B′) ∼= f∗F̃ ⊗B B′.

(b) (F̃ ⊗B B′)⊗B′ B′′ ∼= F̃ ⊗B B′′.

Definition 8.23 (direct image) Let f be a proper morphism. For any rigid
τ -sheaf G̃ on Y we let Rif∗G̃ denote the rigid τ -sheaf on X consisting of Ri(f ×
id)∗G̃ and the composite homomorphism

σ∗X/BR
i(f × id)∗G̃

τ
Rif∗G̃ //

base change

��

Ri(f × id)∗G̃.

Ri(f × id)∗σX/B∗G̃
Ri(f×id)∗τG̃

55jjjjjjjjjjjjjjjj

For any homomorphism ψ : G̃ → G̃′ we abbreviate Rif∗ψ := Ri(f × id)∗(ψ).

This defines Bσ-linear functors

Rif∗ : C̃ohτ (Y,B) −→ C̃ohτ (X,B).

If i = 0, we write f∗ for R0f∗. The functor f∗ is clearly left exact, and when f
is finite, it is exact and Rif∗ = 0 for i > 0.

Proposition 8.24 Suppose f is proper.

(a) If G̃ is nilpotent, then so are the Rif∗G̃.

(b) If ψ is a nil-isomorphism, then so are the Rif∗ψ.

(c) The above functors on rigid τ -sheaves induce unique Bσ-linear functors

Rif∗ : C̃rys(Y,B) −→ C̃rys(X,B).

(d) The functor f∗ is left exact. When f is finite, it is exact and Rif∗ = 0
for i > 0.

The proof uses the fact that for a proper morphism f and an affinoid U of X,
the rigid space f−1U has a finite cover by affinoids. Based on the observation
in Remark 8.3 it is then easy to adapt the proof in the algebraic context, given
in [4], § 3.

We also have:

Proposition 8.25 For any morphisms Z
g−→ Y

f−→ X there is a spectral
sequence

Eij2 = Rif∗R
jg∗ =⇒ Ri+j(fg)∗

induced from that of coherent cohomology.

Proposition 8.26 If f is proper, the functor f∗ is right adjoint to the func-
tor f∗.
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8.3 Extension by zero

A rigid space X is called algebraic, if we have X ∼= Xrig for some scheme which
is of finite type over L. A morphism of rigid spaces Y→ X is called algebraic, if
there exists a morphism of schemes Y → X which are of finite type over L, such
that its rigidification is Y → X. The morphism Y → X is called an algebraic
compactification, if Y → X is an open immersion and X is proper. Note that
any algebraic rigid space has an algebraic compactification.

From now on, for the remainder of this subsection, we fix an algebraic rigid
space U and an algebraic open immersion j : U→ X of rigid spaces. We choose
a closed algebraic complement i : Z→ X of U with ideal sheaf I. Although I is
far from unique, this will cause no difficulties.

In the algebraic context, it is possible to define for any open immersion a
functor ‘extension by zero’ on the category of crystals. This relies on the fol-
lowing two facts: a) Every coherent sheaf on an open subscheme has a coherent
extension. b) Along a closed complement of the open immersion, the operation
τ can only have a pole of finite order. Both of these facts fail in the analytic
context. One can have coherent sheaves over the punctured disc which have
no coherent extension and one may define a τ -operation on the punctured disc
which has an essential singularity at the origin. Therefore we can only expect
to have an extension by zero for those rigid τ -sheaves which do admit an exten-
sion. The following two subsections describe a possible approach to a functor
‘extension by zero’ in the analytic context, as well as ‘direct image with compact
supports’, for algebraic rigid spaces.

Lemma 8.27 Suppose we have a commutative diagram

Y′′

g

��
U

j′′
??�������� j′ // Y′,

where j′, j′′ are algebraic compactifications. Then we have

j′
∗(C̃ohτ (Y′,B)) = j′′

∗(C̃ohτ (Y′′,B)) ⊂ C̃ohτ (U,B).

In particular j′∗(C̃ohτ (Y′,B)) ⊂ C̃ohτ (U,B) is independent of the chosen
algebraic compactification j′ : U→ Y.

Proof: Since j′∗ ∼= j′′
∗
g∗, the left hand side is clearly a subset of the right

hand side. For the opposite inclusion, observe that j′′∗ ∼= j′
∗
g∗ and that g∗

preserves coherence, because g is proper. This proves the first assertion.
The second assertion immediately follows from the first, because any two

algebraic compactifications are dominated by a third.

By the above lemma, the following definition makes sense.

Definition 8.28 Let j′ : U→ Y be any algebraic compactification. We define

C̃oh e
τ (U,B) := j′

∗(C̃ohτ (Y,B)) ⊂ C̃ohτ (U,B)

as the category of extendible rigid τ -sheaves on U over B,.

There are examples that show that C̃oh e
τ (U,B) is not a full subcategory of

C̃ohτ (U,B). In Proposition 8.49, we will show that any rigid τ -sheaf which
arises via rigidification from an algebraic one is extendible.

The following is a direct consequence of the above definition.
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Proposition 8.29 The category C̃oh e
τ (U,B) is a Bσ-linear abelian subcategory

of C̃ohτ (U,B).

Definition 8.30 By C̃ryse(U,B) we denote the essential image under the lo-
calization map C̃ohτ (U,B) → C̃rys(U,B). Objects of C̃ryse(U,B) are called
extendible crystals on X over B.

Clearly one may also define C̃ryse(U,B) in the following way:

Proposition 8.31 Let j′ : U → Y be any algebraic compactification. Then
C̃ryse(U,B) = (j′)∗ C̃rys(Y,B).

It is also possible to localize C̃oh e
τ (U,B) at its subset Se of nil-isomorphisms,

which is localizing. We do not know whether S−1
e C̃oh e

τ (U,B) → C̃ryse(U,B)
is faithful.

Now that we have clarified some of the basic properties of extendible τ -
sheaves, we will explain how to use them to define a functor ‘extension by zero’.

Proposition 8.32 For any extendible rigid τ -sheaf F̃ on U there exists an ex-
tendible rigid τ -sheaf G̃ on X such that F̃ ∼= j∗G̃ and i∗F̃ is nilpotent.

Proof: Let j′′ : X→ Y be any algebraic compactification, which exists because
X is algebraic, and set j′ := j′′j. Let I ′′ be the ideal sheaf of an algebraic
complement of j′ and G̃′ any extension of F̃ to Y. One easily verifies that the
extendible sheaf j′′∗(I ′′G̃′) satisfies all the required properties.

Lemma 8.33 Suppose X has a finite cover by affiniods. Let δ : G̃ → G̃′ be a
morphism in C̃ohτ (X,B) with j∗δ = 0 and assume that i∗G̃′ is nilpotent. Then
Im(δ) is nilpotent.

Proof: Because X has a finite cover by affinoids, there exists m ∈ N such that
Im Im(δ) = 0. By changing i if necessary, we may assume that m = 1, so that

Im(δ) ∼= i∗i
∗ Im(δ) ⊂ i∗i∗G̃′.

But i∗G̃′ is nilpotent, and hence the same holds for its sub-τ -sheaf i∗ Im(δ).

Proposition 8.34 Suppose F̃ and H̃ are extendible rigid τ -sheaves on U and
X, respectively. Then for any morphism ϕ : F̃ → j∗H̃ in C̃oh e

τ (U,B) and any
extension G̃ as in Proposition 8.32, there exists n ∈ N such that ϕ extends to a
homomorphism ϕ̃ : InG̃ → H̃.

Proof: Let j′ : X → Y be an algebraic compactification, and choose a mor-
phism ϕ′ : F̃ ′ → H̃′ in C̃ohτ (Y,B) whose pullback along j′′ := j′j is ϕ. Let
furthermore G̃′ be a τ -sheaf on Y whose pullback along j′ is G̃. Then G̃′ and H̃′
are coherent τ -subsheaves of j′′∗ j

∗G̃. Using the coherence of G̃′ + H̃′ ⊂ j′′∗ j
∗G̃,

one easily shows that G̃′′ := G̃′ ∩ H̃′ is a coherent extension of j∗G̃.
Let I ′′ be the ideal sheaf of an algebraic complement Z of j′′. The cokernel

of the inclusion G̃′′ ↪→ H̃′ is supported on Z, and so, by the previous lemma for
δ = id, it is annihilated by a power of I ′′, say (I ′′)m. Hence the restriction of ϕ′

to (I ′′)mF̃ ′ takes its image in G̃′′ ⊂ G̃′. Because I and I ′′ arise from algebraic
complements, there exists n ∈ N such that In ⊂ (j′)∗(I ′′)m. Therefore the
restriction of ϕ′ to X×B is the desired ϕ̃.
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Passing to the localized categories we now find:

Theorem 8.35 (a) For every extendible rigid crystal F̃ on U there exists
G̃ ∈ C̃ryse(X,B) such that F̃ ∼= j∗G̃ and i∗G̃ is zero in C̃rys(Z,B).

(b) The pair consisting of G̃ and the isomorphism F̃ ∼= j∗G̃ in (a) is unique
up to unique isomorphism, and it depends functorially on F̃ .

Proof: (a) is a reformulation of Proposition 8.32. To prove (b) we may assume
that j is an algebraic compactification. Let us first show that the assignment

F̃ 7→ (G̃, j∗G̃
∼=→ F̃)

depends functorially on F̃ . For this, let ϕ : F̃ → F̃ ′ be a homomorphism of
rigid τ -sheaves on U and let G̃ and G̃′ be extensions as in 8.32. For any integer
n ∈ N, the inclusion InG̃ ↪→ G̃ is a nil-isomorphism, because the cokernel is
supported on Z and annihilated by τn. Thus we may replace G̃ by InG̃, if needed.
By Proposition 8.34, we can thus achieve that ϕ extends to a homomorphism
ϕ̃ : G̃ → G̃′.

Lemma 8.33 shows that the resulting homomorphism in C̃rys(X,B) is unique,
by considering the difference of any two extensions, i.e., that ϕ extends to a
unique homomorphism G̃ // G̃′ in Crys(X,B). This is the desired functorial-
ity. Applying it to the identity morphism on F̃ proves uniqueness, finishing the
proof of (b).

For every extendible rigid crystal F̃ on U over B, we choose G̃ as in Theo-
rem 8.35 and denote it by j!F̃ . By the previous theorem this defines a Bσ-linear
functor, extension by zero,

j! : C̃ryse(U,B) −→ C̃ryse(X,B),

which is unique up to unique isomorphism.

Proposition 8.36 The following assertions hold.

(a) The functor j! : C̃ryse(U,B)→ C̃ryse(X,B) is left adjoint to the functor
j∗ :C̃ryse(X,B)→C̃ryse(U,B).

(b) The adjunction morphism id → j∗j! is an isomorphism on the category
C̃ryse(X,B).

(c) The composite i∗j! is zero.

(d) The functor j! is exact.

(e) There is a natural exact sequence of functors on C̃ryse(X,B)

0 −→ j!j
∗ −→ id −→ i∗i

∗ −→ 0.

Proof: The isomorphism in (b) exists by construction and is functorial by
8.35 (b), and its adjunction property (a) follows from Proposition 8.34. Asser-
tion (c) is also clear by construction.

We now prove (d). It suffices to prove the assertion in the case where X is
proper. Let 0→ F̃ ′ → F̃ → F̃ ′′ → 0 be a short exact sequence in C̃ryse(U,B).

94



Using Proposition 8.34, we may represent the extension by zero of this short
exact sequence by

G̃′ α−→ G̃ β−→ G̃′′ (40)

in C̃oh e
τ (X,B). By Lemma 8.33, the image of βα is nilpotent, and thus by

replacing G̃′ by InG̃′ for some n > 0, we may assume βα = 0. The same lemma
implies that Ker(α) is nilpotent. Furthermore, as βα = 0, the map α factors as

G̃′ −→ Ker(β) ↪−→ G̃.

So we have the four term exact sequence

0 −→ Ker(β)/ Im(α) −→ G̃/ Im(α) −→ G̃′′ −→ Cokerβ −→ 0.

Again by Lemma 8.33, the rigid τ -sheaves Ker(β)/ Im(α) and Cokerβ are nilpo-
tent. Hence the sequence (40) is short exact in C̃ryse(X,B).

Part (e) is simple again, because for any G̃ ∈ C̃ryse(X,B), the sequence in
(e) is represented by the short exact sequence

0 −→ IG̃ −→ G̃ −→ G̃/IG̃ −→ 0.

Finally, we list the following compatibilities in C̃rys( ,B):

Proposition 8.37 Suppose F̃ , H̃ ∈ C̃ryse(U,B) and G̃ ∈ C̃ryse(X,B). Then
the following hold.

(a) For open algebraic immersions U′
j′

↪−→ U
j

↪−→ X, we have (jj′)! ∼= j!j
′
! .

(b) j!(F̃ ⊗ j∗G̃) ∼= j!F̃ ⊗ G̃.

(c) j!(F̃ ⊗ H̃) ∼= j!F̃ ⊗ j!H̃.

(d) j!(F̃ ⊗B B′) ∼= j!F̃ ⊗B B′.

(e) For any algebraic morphism g : X′ → X consider the pullback diagram

U′
� � j′ //

g′

��

X′

g

��
U

� � j // X.

Then the base change morphism j′!g
′∗F̃ → g∗j!F̃ is an isomorphism.

Proof: In (a) through (d) one must show that the right hand side satisfies
the characterization 8.35 (a) for the left hand side. Restricting both sides to
U yields clearly an isomorphism. To show the vanishing of the pullback to
the closed complement one uses Lemma 8.33 and the various other foregoing
compatibilities.

For (e), observe first, that using any compactification of X and X′ one can
construct a commutative diagram

X′
j̃′ //

g

��

Y′

g̃

��
X

j̃ // Y,
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where Y and Y′ are proper. Let Ĩ be the ideal sheaf of a complement of j̃j, and
assume that I = j̃∗Ĩ, by changing i if necessary. Because the diagram in the
statement of (e) is cartesian, g∗I is the ideal sheaf of a complement of U′. Let
F̃ be an extendible sheaf on U and G̃′ be an extension to Y. Then G̃ := j̃∗(ĨG̃′)
represents j!F̃ , and hence g∗G̃ represents g∗j!F̃ . On the other hand, we have

g∗j̃∗(ĨG̃′) ∼= g∗(I j̃∗G̃′) ∼= (g∗I)(g∗j̃∗G̃′) ∼= (g∗I)(j̃′)∗g̃∗G̃′.

The last expression clearly represents j′!g
∗F , and so (e) is proved.

8.4 Direct image with compact support

In this subsection, we assume that X is algebraic. No assumption on U is made.

Definition 8.38 A morphism f : U→ X is called algebraically compactifiable,
if there exists a diagram

U
j′ //

f ��>
>>

>>
>>

> Y

f̄

��
X,

(41)

where f̄ is proper algebraic and j is an open algebraic immersion. The diagram
(41) is called a compactification of f .

Since all objects in the above diagram are algebraic, Y and X have algebraic
compactifications.

Definition 8.39 (direct image with compact supports) Suppose f : U →
X is algebraically compactifiable with a compactification as above. We define

Rif! := Rif̄∗j! : C̃ryse(U,B)→ C̃rys(X,B)

as the i-th right derived direct image with compact supports.

Strictly speaking Rif! is not a right derived functor, it is only the composite of
an exact with an i-th right derived functor.

As given, the above definition depends on the chosen algebraic compactifi-
cation. The following result clarifies the situation.

Proposition 8.40 The functors Rif! are independent of the chosen algebraic
compactification (in a functorial way) and take their image in C̃ryse(X,B).

We first prove various lemmas:

Lemma 8.41 Given a proper algebraic morphism p : Y2 → Y1 between rigid
spaces, there exists a pullback diagram

Y2

p

��

j′2 // Z2

p̄

��
Y1

j′1 // Z1,

(42)

where the morphisms j′i : Yi → Zi are algebraic compactifications and p̄ is
algebraic.
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Proof: Because p is algebraic and all the assertions concern algebraic mor-
phisms, it suffices to prove the assertion for schemes of finite type over L instead
of rigid spaces. The scheme corresponding to a given rigid space is denoted by
simply replacing the gothic by its corresponding latin letter. Morphisms will
still have the same name.

So, let Y2
j̃→ Z ′2 and Y1

j′1→ Z1 be any compactifications. Define Z2 as the
Zariski closure of Y2 in the product Z ′2 × Z1 under (j̃, j′1p). The product has a
canonical map to Z1, receives a canonical map from Y2, and is proper. Thus Z2

is proper and there are an induced open immersion j′2 : Y2 → Z2 and a morphism
p̄ : Z2 → Z1 such that the above diagram commutes.

To show that the so-constructed diagram is a pullback diagram, we need to
show that the canonical morphism g : Y2 → Y1 ×Z1 Z2 is an isomorphism. It
is an open immersion, because j′2 as well as Y1 ×Z1 Z2 → Z2 are open. At the
same time it is proper, because p is separated and Y1 ×Z1 Z2 → Y1 is proper,
cf. [26], Cor. II.4.8. But any proper open immersion is an isomorphism.

Lemma 8.42 Suppose we are given a diagram as (42). Then

j′1
∗
Rip̄∗ ∼= Rip∗j

′
2
∗ : C̃ohτ (Z2,B) −→ C̃ohτ (Y1,B).

Proof: This follows from flat base change for rigid cohomology. The compati-
bility with τ is clear.

Lemma 8.43 Consider a pullback diagram

U2
j2 //

p′

��

Y2

p

��
U1

j1 // Y1,

where p, p′ are proper algebraic, and j1, j2 are open algebraic immersions with
dense image. Then

j1!R
ip′∗
∼= Rip∗j2! : C̃ryse(U1,B)→ C̃ryse(Y2,B) for i ≥ 0.

Proof: By Lemma 8.41, we have a commutative diagram

U2
j2 //

p′

��

Y2

j′2 //

p

��

Z2

p̄

��
U1

j1 // Y1

j′1 // Z1,

where both squares are pullback diagrams.
We claim that it suffices to prove the lemma for the large rectangular pull-

back square. Suppose we have shown (j′1j1)!R
ip′∗
∼= Rip̄(j′2j2)! for i ≥ 0. Let us

apply j′1
∗. Then

j1!R
ip′∗
∼= j′1

∗(j′1j1)!R
ip′∗
∼= j∗1R

ip̄(j′2j2)!
Lem. 8.42∼= Rip∗j

′
2
∗(j′2j2)! ∼= Rip∗j2!,

and the claim is shown.
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Thus from now on, we assume that Y1 and Y2 are proper. Let us fix a
rigid extendible τ -sheaf F̃ on U. We will make use of the following result from
‘Residues and Duality’ by Hartshorne, [27], which carries over to rigid coherent
sheaves and is compatible with the σX/B-linear morphisms, we consider: One
has in the derived category of coherent rigid sheaves

Rp∗(G̃
L
⊗ Lp∗H̃) ∼= Rp∗(G̃)

L
⊗ H̃.

This yields the following spectral sequences for rigid τ -sheaves G̃ ∈ C̃ohτ (Y2,B)
and H̃ ∈ C̃ohτ (Y1,B):

Ei,j2 = Rip∗(Hj(G̃
L
⊗ Lp∗H̃)) =⇒ Hi+j(Rp∗(G̃)

L
⊗ H̃),

E′2
i,j = Tor−j(Rip∗G̃, H̃) =⇒ Hi+j(Rp∗(G̃)

L
⊗ H̃),

E′′2
i,j = Tor−j(G̃, L−ip∗H̃) =⇒ Hi+j(G̃

L
⊗ Lp∗H̃).

Passing to the category of crystals, we can eliminate nilpotent terms. Further-
more we specialize H̃ to I1lY1,B, where I is the ideal sheaf of a complement
of U1 in Y1. Also we take for G̃ some rigid τ -sheaf on Y2 which extends F̃ .
Because the above diagram is cartesian, p∗I is the ideal sheaf of a complement
of U2 in Y2. Proposition 8.18 yields

Tori( , I1lY1,B) = Tori( , (p∗I)1lY2,B) = 0

for all i 6= 0, and isomorphisms (I1lY1,B)⊗ F̃
′ ∼= IF̃ ′ for F̃ ′ ∈ C̃ohτ (Y1,B), as

well as (p∗(I1lY1,B))⊗ G̃ ∼= (p∗I)G̃ as crystals. Thus in Crys(Y1,B) one has

Ei,02 = Rip∗((p∗I)G̃),

E′2
i,0 = IRip∗G̃,

and all E2-terms with j 6= 0 are zero. The spectral sequence thus yields isomor-
phisms

Rip∗((p∗I)G̃) ∼= IRip∗G̃

for all i ≥ 0. By Lemma 8.42, it follows that Rip∗G̃ is an extension of Rip′∗F̃
for i > 0. Hence IRip∗G̃ represents j1!Rip∗F̃ . Observe also that (p∗I)G̃ repre-
sents j2!F̃ . Combining the last two identifications with the above isomorphism
completes the proof of the lemma.

Proof of Proposition 8.40: To see that the Rif! take their image in C̃ryse(X),
we apply Lemma 8.41 to have a commutative diagram of algebraic maps

U
j //

f
��>

>>
>>

>>
> Y

j′ //

f̄

��

Z

f̄ ′

��
X

j′′ // Z′,

where the right hand square is cartesian, the horizontal maps are all open immer-
sions, the vertical maps are proper, and Z, Z′ are proper. Let F̃ ∈ C̃ryse(U,B)
and G̃ ∈ C̃rys(Z,B) some extension. Let furthermore I ′ be the ideal sheaf of a
complement of j′j. Then j!F̃ is represented by j′∗(I ′G̃), and so we have

Rif̄!F̃ ∼= Rif̄∗j
′∗(I ′G̃) ∼= j′′

∗
Rif̄ ′∗(I ′G̃),
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and it follows that Rif̄!F̃ is extendible.
We now show the independence of Rif! from the chosen algebraic compact-

ification. Using standard techniques, e.g., [38], Ch. 6, § 3, any two algebraic
compactifications are dominated by a third. Thus it suffices to consider the
case where one algebraic compactification dominates another one. In this case,
one needs to show that there is a functorial isomorphism between the two ex-
pressions for Rif!. Again one can follow the arguments in loc. cit. The proof
ultimately rests on the spectral sequence for composition of direct image un-
der proper morphisms, Prop. 8.25, and Lemma 8.43 applied to U1 = U2 = U
and p′ = id.

As another application Lemma 8.43, we obtain:

Corollary 8.44 Suppose g : Z → Y and f : Y → X are algebraically compacti-
fiable. Then there is a spectral sequence

Rif!R
jg! =⇒ Ri+j(fg)! : C̃ryse(Z,B)→ C̃ryse(X,B).

Proof: From the given compactifications, one may construct a commutative
diagram

Z
� � j′ //

g

��

Z′
� � j̄′ //

ḡ

����
��

��
��
g′

��

Z′′

ḡ′~~}}
}}

}}
}

Y
� � j //

f

��

Y′

f̄~~~~
~~

~~
~

X

where the oblique maps are proper algebraic and the horizontal maps are open
algebraic immersions, and such that the parallelogram formed by j̄′, ḡ′, j, ḡ is
cartesian. By Lemma 8.43, we therefore have an isomorphism j!R

iḡ∗ ∼= Riḡ′∗j̄
′
! .

But then we have

Rif!R
jg!

def= Rif̄ j!R
j ḡj′!
∼= Rif̄∗R

iḡ′∗j̄
′
!j
′
! =⇒ Ri+j(f̄ ḡ′)∗(j′j̄′)!

def= Ri+j(fg)!.

8.5 Rigid τ-sheaves with B-coefficients

In this subsection, we develop some rudiments of a theory of rigid τ -sheaves
with algebraic coefficients. Such objects arise naturally from Drinfeld-modules
or Anderson’s t-modules over a rigid base.

As we are not sure, whether the following natural definition can be found in
the literature, we include it here for clarity.

Definition 8.45 Let X be a rigid space. We call a sheaf F̃ of OX-modules
quasi-coherent, if it is a direct limit of coherent OX-modules.

Definition 8.46 For B as above, we define the quasi-coherent sheaf of rings
BX on X as OX ⊗ B, i.e., so that on an affinoid U of X, we have Γ(U, BX) =
Γ(U,OX)⊗B with the obvious restriction (ringhomo-)morphisms.

A coherent sheaf of BX-modules is a quasi-coherent sheaf F on X such that
over any affinoid U of X, the sections Γ(U,F) are a finitely generated module
over Γ(U,OX) ⊗ B and such that the module structure is compatible with the
restriction maps.
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Note that for any coherent sheaf F of BX-modules the sections of the sheaf
σ∗XF on an affinoid U are given by Γ(U,F)⊗Γ(U,OX) Γ(U,OX), where the tensor
product is relative to the q-power map σU : Γ(U,OX)→ Γ(U,OX) : x 7→ xq.

On an affinoid X = SpmR, the category of coherent BX-modules is equiv-
alent to the category of finitely generated R⊗k B-modules M for which there
exists a direct limit system Mi of finitely generated R-modules such that M =
lim−→Mi as R-modules.

As both of the properties in the previous paragraph are preserved under
taking kernels, cokernels, images, coimages, the following is clear:

Proposition 8.47 The category of coherent sheaves of BX-modules is abelian.

By σX/B , we denote the morphism of ringed spaces on BX which is the
identity on the underlying topos, and σX⊗id on OX⊗B. Clearly σ∗X/B preserves
coherent BX-module. It will take the role played by (σ × id)∗ in the algebraic
setting.

Definition 8.48 A rigid τ -sheaf on X over B, is a pair F̃ := (F̃ , τF̃ ) consisting
of a coherent sheaf F̃ of BX-modules and a BX-linear homomorphism

(σX/B)∗F̃
τF̃ // F̃ .

The category of rigid τ -sheaves over B is denoted C̃ohτ (X, B). The morphisms
are morphisms of sheaves of BX-modules which are compatible with the mor-
phism τ . The category is B-linear abelian, where kernel, cokernel, image and
coimage are defined as for the underlying category of sheaves.

So if X = SpmR is an affinoid, any rigid τ -sheaf on X over B arises from
a finitely generated τ -module over R ⊗k B. Occasionally, we will take this
viewpoint.

Let j : U → X be an affinoid subdomain of X. Then by the restriction F̃ |U
or j∗F̃ of a rigid τ -sheaf F̃ on X to U, we mean the pullback under j∗ together
with the induced morphism.

8.6 Some rigid sites

We will be interested in comparing crystals for the following sites. (Algebraic)
crystals on X over A, rigid crystals on X over A, and rigid crystals on X over
A := (SpecL ⊗k A)rig and over DA, which is defined as follows: DA denotes
the affinoid subset of points x ∈ A such that for n → ∞ the sequence σ̃nAx
does not converge to ∞. The rings corresponding to the above rigid spaces
are A := Γ(A,OA) and DA := Γ(DA,ODA

).
Note that one can also define DA as follows: Choose a finite flat morphism

k[T ]→ A. Let L〈〈T 〉〉 denote the Tate-algebra over L. Then DA is isomorphic
to Spm(L〈〈T 〉〉 ⊗k[T ] A). To see this, observe that a point of DA is given by
a map x : A → L such that each |x(a)| ≤ 1 for all a ∈ A, while a point of
Spm(L〈〈T 〉〉 ⊗k[T ] A) consists of a map x′ : A → L and an element t ∈ L, such
that |t| ≤ 1 and x′ extends the map k[T ] → L : T 7→ t. Because A is integral
over k[T ] the two sets of data are equivalent. In particular for A = k[t], one has
DA = L〈〈T 〉〉.

In analogy to Definition 8.46, we define for a noetherian scheme X over k
the quasi-coherent sheaf of rings AX by U 7→ Γ(U,OX) ⊗k A for U ⊂ X open.
A coherent sheaf F of AX -modules is defined as a quasi-coherent sheaf of OX -
modules with a compatible action of AX such that on any affine U of X the
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module Γ(U,F) is finitely generated over Γ(U,OX)⊗A. Analogous notions can
be defined if X is replaced by a rigid space and A by A or DA, respectively.

Now the category of coherent sheaves of OX×A-modules is equivalent to the
category of coherent sheaves of AX -modules. An analogous equivalence can be
formulated for OX×?-modules, ? ∈ {A,DA}. Because any quasi-coherent sheaf
of OX -modules is a direct limit of coherent sheaves of OX -modules, for any
scheme X of finite type over L this yields a functor

Cohτ (X,A) −→ C̃ohτ (Xrig, A) : F 7→ FA-rig.

Also for any rigid space X, the above defines a functor

C̃ohτ (X, A) −→ C̃ohτ (X,A) : F̃ 7→ F̃A-rig.

Furthermore the restriction of sheaves from X×A to X×DA yields the functor

C̃ohτ (X,A) −→ C̃ohτ (X,DA) : F̃ 7→ F̃DA-rig.

For F ∈ Cohτ (X,A) and F̃ ∈ C̃ohτ (X, A), we abbreviate the composite func-
tors

FA-rig := (FA-rig)A-rig, FDA-rig := (FA-rig)DA-rig, F̃DA-rig := (F̃A-rig)DA-rig.

Note that on the underlying module-categories, each of the above functors can
be defined on quasi-coherent sheaves and preserves quasi-coherence.

The characterization of nil-isomorphisms given in Propositions 7.6 and 8.6
shows that the above three functors induce functors

Crys(X,A)
F7→FA-rig

// C̃rys(Xrig, A)

C̃rys(X, A)
F̃ 7→F̃A-rig

// C̃rys(X,A)
G̃ 7→G̃DA-rig

// C̃rys(X,DA)

The first result on the above functors concerns the subclasses of extendible
τ -sheaves.

Proposition 8.49 The functor F 7→ FA-rig : Crys(X,A) → C̃rys(Xrig,A)
takes its image in C̃ryse(Xrig,A). The functor

C̃rys(X,A)→ C̃rys(X,DA) : F̃ 7→ F̃DA-rig

preserves the subcategory of extendible rigid sheaves.

Proof: For the first part, observe that by a result of Nagata, all schemes of
finite type over L are compactifiable and by [4], § 3, every sheaf has an extension
by zero to its compactification. It is simple to see, cf. also Theorem 8.50 below,
that F 7→ FA-rig is compatible with j∗ for an open algebraic immersion j. The
result is now obvious.

The remaining assertion follows from the compatibility of the functor F̃ 7→
F̃DA-rig with j∗ for an open algebraic immersion j, see below.
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The following theorem summarizes the main compatibilities of the functors
defined above.

Theorem 8.50 The functors Cohτ (X,A) → C̃ohτ (X,A) : F 7→ FA-rig and
C̃ohτ (X,A)→ C̃ohτ (X,DA) : F̃ 7→ F̃DA-rig are compatible with

(a) pullback,

(b) tensor product,

(c) change of coefficients,

(d) higher direct image under proper morphisms.

Considered as functors on crystals, the above two functors are compatible
with (a)—(d) as well as the two functors

(e) extension by zero for extendible crystals,

(f) direct image with compact supports for extendible crystals and underlying
spaces which are compactifiable.

The proof of the above theorem is essentially that given in [33] for a GAGA
principle from schemes to rigid spaces, which in turn is based on Serre’s original
proof of a GAGA principle, [47]. The most difficult part in the proof is the
compatibility with higher direct image functors under proper morphisms. To
define a natural transformation for higher direct images, one uses Čech coho-
mology. For the convenience of the reader and because we will later use Čech
cohomology as a computational device, we now recall some basic results on this,
and then comment on the proof of the above theorem.

Let us first state the comparison theorem of Leray for Čech and derived
functor cohomology in the algebraic and analytic context. For a module M
over a ring R, we denote by Mas the associated quasi-coherent sheaf on SpecR,
and similarly for a module M on an affinoid ring R, we denote by Mas the
associated quasi-coherent sheaf on SpmR.

Theorem 8.51 Let f : Y → X be a morphism of schemes of finite type over L
and F a quasi-coherent sheaf on Y . Assume X = SpecR and {Ui} is a cover of
Y such that Hj(U,F) = 0 for all j > 0 and all finite intersections U of elements
Ui. Then

Rif∗F ∼= Ȟi({Ui},F)as.

Note that Hj(U,F) = 0 whenever U is affine, so that one can use affine covers
of Y to compute cohomology. Also note that the case where X is not affine can
be treated by patching the above result for an affine cover of X.

Next we turn to the analogous result for rigid spaces.

Theorem 8.52 Let f : Y → X be a morphism of schemes of rigid spaces over
L and F̃ a quasi-coherent sheaf on Y. Assume X = SpmR and {Ui} is an
admissible cover of Y such that Hj(U, F̃) = 0 for all j > 0 and all finite
intersections U of elements Ui. Then

Rif∗F̃ ∼= Ȟi({Ui}, F̃)as.

By Tate’s acyclicity theorem one has Hi(U, F̃) = 0 whenever U is an affinoid.
But more is true due to Kiehl’s Theorem B, [32], Satz 2.4:

Theorem 8.53 If X is quasi-Stein, then for all quasi-coherent sheaves F̃ and
all i > 0 one has Hi(X, F̃) = 0.
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Observe that the product of quasi-Stein domains is again quasi-Stein. Further-
more for any affine scheme X, the space Xrig is quasi-Stein.

We now give the proof of Theorem 8.50.

Proof: Note first that the result for F̃ 7→ F̃DA-rig is obvious since restricting
coefficients is compatible with any of the functors (a)—(f), and so from now on,
we only consider the functor F 7→ FA-rig. For τ -sheaves, except for (d) all the
compatibilities are obvious.

To prove (d), let us first explain how to define the natural transformation
that will lead to the compatibility of functors. For this, we consider coherent
sheaves without a τ -action. Once the compatibility is shown for these, it is
straightforward to extend it to τ -sheaves. We leave this extension procedure to
the reader.

Let {Ui} be an affine cover of Y and let F be a coherent sheaf of OY×SpecA-
modules. By a patching argument, we may assume that X is affine. Denote the
Čech complex with respect to {Ui × SpecA} by C•({Ui},F). Then we have

Rif∗F ∼= Hi(C•({Ui},F))as.

Similarly, we denote by C•({Ui}, F̃) the Čech complex of a rigid sheaf F̃ of
OX×A-modules for an admissible cover Ui × A of X × A. Because the rigid
spaces U rig

i and arbitrary intersection of these are Stein-domains, one has the
formula

Rif∗(FA-rig) ∼= Hi(C•({U rig
i },F

A-rig))as.

There is a functorial morphism of complexes(
C•({Ui},F)

)A-rig

−→ C•({U rig
i },F

A-rig)

from the construction of F 7→ FA-rig. This yields the desired morphism

(Rif∗F)A-rig −→ Rif∗(FA-rig).

To prove that this morphism is an isomorphism, one first considers the case
of projective morphisms. There one can follow the proof given in [47], i.e., one
first proves the result for the sheaves OPm

X
⊗A by direct computation, then for

the OPm
X

(n)X⊗A by some inductive argument, then for general coherent sheaves
F on PmX × SpecA by using resolutions 0 → G → OPm

X
(n) ⊗ A → F → 0 and

the fact that the cohomological dimension of the functors in question is n. The
result easily extends to any projective morphism. To obtain the same result
for general proper morphisms, one uses Chow’s Lemma and a comparison of
spectral sequences. For a complete argument in a similar situation see [33].

Passing from (rigid) τ -sheaves to crystals, immediately yields (a)–(d) for
crystals. It is also clear that once (e) is proved, (f) is automatically true by (e)
and (d). For this, let F be a τ -sheaf on U , and j : U → X an open algebraic
immersion. Choose a coherent extension G to X and let I denote the ideal
sheaf of a complement of j. Then Irig is the ideal sheaf of a complement of
jrig : U rig → Xrig. Furthermore it is clear that

(IG)A-rig ∼= IrigGA-rig.

Because IG represents j!F and IrigGA-rig represents j!F rig, (e) is proved.

103



Let us finally give some examples for rigid τ -sheaves, which will be impor-
tant in the sequel. Following Example 7.7 (b), however, with a rigid analytic
Drinfeld-module instead of an algebraic Drinfeld-module, one easily sees that
to each rigid analytic Drinfeld module (ϕ,L) on X of rank r, there is attached
a locally free rigid τ -sheaf on X over A. We denote it by M̃(ϕ).

Definition 8.54 For ϕ(K) as on page 44, we set F̃(K) := M̃(ϕ(K)). Further-
more for the universal rigid analytic Drinfeld-module ϕrig

K for an admissible level
structure K, we define F̃K := M̃(ϕK).

Proposition 8.55 Suppose K is admissible. Then

GL2(K)\F̃(K) ∼= F̃K.

Furthermore one has
(FK)A-rig ∼= F̃K.

Proof: The first half of the proposition follows easily from the fact that ϕK
is constructed from ϕ(K) by quotienting the underlying space ΩK by GL2(K),
cf. Subsection 4.3. For the second one uses that the moduli space for analytic
Drinfeld-modules of rank r with level K-structure arises from the algebraic one
by rigidification, and hence ϕrig

K arises from ϕ via the same procedure. This
yields the result for the associated τ -sheaves.
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9 Auxiliary results on families of A-motives

9.1 Purity

Following Potemine, we define so-called pure Drinfeld-Anderson sheaves over
any base X. The most basic example is Drinfeld’s shtuka attached to any family
of Drinfeld-modules over some base X. Our main result is that exterior, sym-
metric and tensor powers do preserve the category of pure Drinfeld-Anderson
motives. This is a natural extension of results of Anderson and Potemine. It
follows easily that the τ -sheaves F (n)

K := Symn FK arise from a pure Drinfeld-
Anderson motive on MK of rank n+ 1 and weight n/2.

The following is similar to [41] Def. 6.2.1:

Definition 9.1 A Drinfeld-Anderson datum FDA = (Fi, αi, βi, char) of rank r
consists of

(a) locally free sheaves Fi, i ∈ Z on X × C of rank r,

(b) monomorphisms βi : Fi −→ Fi+1, i ∈ Z,

(c) monomorphisms αi : (σ × id)∗Fi −→ Fi+1, i ∈ Z,

(d) and a morphism char : X → SpecA

such that the following diagram commutes for all i

(σ × id)∗Fi
αi //

(σ×id)∗βi

��

Fi+1

βi+1

��
(σ × id)∗Fi+1

αi+1 // Fi+2

A pure Drinfeld-Anderson motive on X of rank r, dimension d and weight
w = d/r is a Drinfeld-Anderson datum FDA of rank r which is subject to the
following conditions:

(i) The sheaf Coker(βi) is supported on X×{∞} and pr1∗ Coker(βi) is locally
free of rank d over X.

(ii) The sheaf Coker(αi) is supported on the graph of char in X × SpecA and
pr1∗ Coker(αi) is locally free of rank d on X.

(iii) There exist integers u, v with u/v = w such that for all i the map

βi+vd∞−1 . . . βi+1βi : Fi → Fi+vd∞

identifies Fi with the subsheaf Fi+vd∞(−X × {u∞}) of Fi+vd∞ .

Let π∞ be any uniformizer of A∞. The following definition is from [1], § 1.9
and [41], § 6.1, respectively.

Definition 9.2 A pure A-motive of rank r and weight w on a field F is an
A-motive M over F ⊗ A{τ}, which is projective over F ⊗ A of rank r, such
that there exists an F ⊗̂AA∞-lattice W contained in M⊗̂AK∞ which satisfies
the following: For suitable u, v ∈ N with w = u/v one has τvd∞(W ) = π−u∞ W ,
where τ is the action on M⊗̂AK∞ induced from M .
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Remarks 9.3 (i) For any pure Drinfeld-Anderson motive FDA its restriction
to X × SpecA naturally defines a τ -sheaf on X, denoted by FDA := (F , τF ),
as follows: Define F := F0|X×SpecA and

τF : (σ × id)∗F
α0|X×Spec A−→ F1|X×SpecA

β−1
0|X×Spec A−→ F ,

where we use that restrictions of the βi to X × SpecA are isomorphisms.
(ii) Let X = SpecF for an algebraically closed field F . By [41], § 6.1 and

[1], § 1.9, there is a bijection between the set of pure Drinfeld-Anderson motives
FDA on X and the set of pure A-motives (M, τ) on F such that τ−1W ⊂ W
for some (any) W . The equivalence is given by mapping FDA to (M, τ,W ),
where (M, τ) is defined as in (i) and W is the completion of the stalk of F0 at
SpecF × {∞}, so that W is a free F ⊗̂A∞-module of rank r.

(iii) From (ii) it follows that all the geometric fibers of the τ -sheaf FDA ,
defined in (i), are pure A-motives of weight w and rank r, so that in particular
FDA defines a family of A-motives on X of characteristic char.

Proposition 9.4 Let ϕ be a Drinfeld-module on X of rank r. Then to ϕ one
has a naturally attached pure Drinfeld-Anderson motive FDA (ϕ) on X × C of
rank r, dimension 1 and weight 1/r, such that the τ -sheaf FDA (ϕ) is canonically
isomorphic to the τ -sheaf M(ϕ) in Example 7.7 (ii).

Proof: The pure Drinfeld-Anderson motive FDA (ϕ) is precisely the shtuka
attached to ϕ by Drinfeld. For some details on this construction we refer to [3],
proof of Prop. 5.10, or [2], § 3.2.

Suppose we are given pure Drinfeld-Anderson motives FDA and F ′DA on X
of ranks r, r′ and weights w, w′, respectively, which have the same characteristic.
Then the tensor product defines in an obvious way a Drinfeld-Anderson datum
denoted FDA ⊗F ′DA of rank rr′.

Lemma 9.5 The datum FDA ⊗F ′DA defines a pure Drinfeld-Anderson motive
of rank rr′ and weight w + w′.

Proof: We have to verify properties (i)–(iii) of the above definition: Because
FDA and F ′DA have the same characteristics, the cokernels of βi⊗β′i and αi⊗α′i
are supported on X × {∞} and the graph of char, respectively. So to check (i)
and (ii) it remains to check that the pushforward under pr1 of these cokernels
is locally free on X and of dimension (w + w′)rr′. Applying the Snake Lemma
to the the diagram whose basic square is

Fi ⊗F ′i
� � βi⊗id // Fi+1 ⊗F ′i

id⊗β′i
��

Fi ⊗F ′i
� � βi⊗β′i // Fi+1 ⊗F ′i+1,

one obtains the short exact sequence

0→ Cokerβi ⊗F ′i → Coker(βi ⊗ β′i)→ Fi+1 ⊗ Cokerβ′i → 0.

An analogous sequence can be obtained for Coker(αi ⊗ α′i). To prove (i), one
may reduce the situation to the case where X is the spectrum of a complete
local ring R. Because the support of Coker(βi ⊗ β′i) is on X × {∞}, we may
the replace X ×C by the completion Y of X ×C along X × {∞}, which is the
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spectrum of a semi-local ring. But then the Fi and F ′i are free on Y and the
assertion (i) is obvious. A similar argument, in which one replaces X×C by its
completion along the graph of the map char, proves the assertion (ii).

In the same way in which we defined FDA ⊗F ′DA above, one can for a given
pure Drinfeld-Anderson motive FDA of rank r define Drinfeld-Anderson data
⊗nFDA , Symn FDA and

∧n FDA of ranks rn,
(
n+r−1
n

)
and

(
r
n

)
, respectively.

Proposition 9.6 For a pure Drinfeld-Anderson motive FDA and any n ∈
N, the Drinfeld-Anderson data ⊗nFDA , Symn FDA and

∧n FDA define pure
Drinfeld-Anderson motives of rank rn,

(
n+r−1
n

)
and

(
r
n

)
, respectively, each of

weight nw.

Proof: The assertion for ⊗nFDA is an immediate consequence of the previous
lemma. The other two Drinfeld-Anderson data are defined as natural quotients
of ⊗nFDA . For these, we will check (i)–(iii) of the above definition. As in the
proof of the lemma, part (iii) is easy and omitted.

Using the same reduction procedure as in the proof of the previous lemma,
we may assume that X = SpecR, where R is a complete local ring, and we
may replace X × C by SpecS where S = R[[x]]. In this situation, the proof is
completed by the following lemma.

Lemma 9.7 Let R be complete local with maximal ideal m and S = R[[x]].
Suppose ϕ ∈Mr×r(S) is such that one has a short exact sequence

0 −→ Sr
ϕ−→ Sr −→ C −→ 0, (43)

in which C is a free R-module of rank d, supported on SpecS/(x). Then for
all n ∈ N the map Symn ϕ is injective and its cokernel is free over R of rank
d ·
(
n+r−1
n

)
. Similarly, for n ∈ {1, . . . , n}, the map

∧n
ϕ is injective and its

cokernel is free over R of rank d ·
(
r
n

)
.

Proof: We only give the proof for the symmetric powers, the other one being
similar. Observe first that ϕ becomes an isomorphism, if we invert x and that the
map S ↪→ S[x−1] is injective. Since computing symmetric powers of ϕ commutes
with inverting x, it follows that the map Symn ϕ : Symn Sr → Symn Sr is
injective, because after inverting x, it is an isomorphism.

Define Cn as the cokernel of Symn ϕ. Set κ := R/m and let ϕ̄ be the
reduction of ϕ modulo m. Clearly

0 −→ Symn Sr
Symn ϕ−→ Symn Sr −→ Cn −→ 0

is an R-flat resolution of Cn, so that TorR1 (Cn, κ) is isomorphic to the kernel of
Symn ϕ̄. Because C is R-flat, reducing the short exact sequence (43) modulo m
yields a short exact sequence

0 −→ κ[[x]]r
ϕ̄−→ κ[[x]]r −→ C̄ −→ 0,

where C̄ has dimension r as a vector space over κ. Over the valuation ring κ[[x]]
it is easy to see that Symn ϕ̄ is injective and that its cokernel has dimension
d ·
(
n+r−1
n

)
over κ (e.g., by using the elementary divisor theorem). The first

observation shows that TorR1 (Cn, κ) = 0, so that Cn is flat over the local ring
R. The second observation implies that rankR Cn = dimκ Coker(Symn ϕ̄) =
d ·
(
n+r−1
n

)
. This completes the proof of the lemma.
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For later use, we record the following consequence of Propositions 9.4 and 9.6.

Corollary 9.8 The τ -sheaves F (n)
K = Symn FK arise from pure Drinfeld-An-

derson motives of rank n+ 1 and weight n/2 on MK. In particular, they are
families of pure A-motives on MK.

9.2 Uniformizability

In this subsection, we assume that all schemes X and affinoid spaces X are
reduced. Therefore the spectral norm | | will always define a norm on OX.

We introduce an ad hoc definition for analytic family of globally uniformiz-
able τ -sheaves, which follows closely Anderson’s pointwise definition, [1], § 2.
No attempt is made to obtain great generality. The central result is a criterion,
similar to the pointwise one given in [1], for a τ -sheaf attached to an A-module
over an analytic base to be globally uniformizable. This can then be applied
to Drinfeld-A-modules. As a corollary, we find an ‘explicit’ isomorphism on the
analytic site between F̃ΩK |X and 1̃lX,DA

⊗A PX where X ⊂ ΩK is any connected
component and PX is a suitable projective rank 2 module over A. In particular
this implies that for any affinoid U in the standard cover of UK of M

rig

K which
does not contain a cusp, there is an isomorphism

F̃K|U×DA

∼= 1̃lU,DA
⊗A PU

in C̃ohτ (U,DA) for some projective rank 2 module PU over A.
Let G/X denote the category of (rigid) vector bundles over X with k-linear

algebraic morphisms α : V → W, i.e., rigid locally on SpmR the morphism
α can be given by a polynomial

∑
Aiσ

i : Rm → Rn, where Ai ∈ Mm,n(R),
the restrictions of V and W to SpmR arise from Rm, respectively Rn, and
σ denotes the q-power map on the components of Rm. If V is such a vector
bundle, then End(Lie(EndG/X(E))) ∼= EndOX

(E), and hence there is a diagonal
action of a ∈ A ⊂ K∞ ⊂ L ⊂ Γ(X,OX) on it.

Definition 9.9 A family of A-modules E of dimension d and rank r on a rigid
space X/L consists of a vector bundle E of rank d on X and a ring homomor-
phism

ϕ : A→ EndG/X(E) : a 7→ ϕa

subject to the following conditions: Let us denote by Lie(E) the tangent space of
the k-group scheme E along the zero section and ϕ′a ∈ End(Lie E) the induced
derivation of ϕa. Then:

(i) ∀a ∈ A∃na ∈ N : (a− ϕ′a)na Lie(E) = 0.

(ii) As a sheaf of AX-modules, M(E) := HomG/X(E ,Ga) is coherent, where
a ∈ A acts as composition on the right with ϕa.

(iii) The sheafM(E) is a locally free sheaf of AX-modules of rank r, i.e., there
exists an admissible affinoid cover Ui = SpecRi of X such that the re-
striction ofM(E) to SpecRi⊗A is isomorphic to Pas

i for some projective
Ri ⊗A-module Pi of rank r.

We define an operation τ onM(E) as composition on the left with the Frobenius
on Ga/X. Hence the sheafM(E) is equipped with the structure of a rigid τ -sheaf
over A on X. By M̃(E), we denote the induced rigid τ -sheaf on X over DA.

Let E be a family of A-modules on a rigid space X and fix an affinoid subdo-
main U := SpmB of X over which E is free, say of rank r. Let κ : Γ(U, E)→ Bd

be a fixed isomorphism and κ′ the induced isomorphism Γ(U,Lie(E))→ Bd. The
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isomorphisms κ and κ′ are called coordinates of E|U and Lie(E)|U , respectively.
For a matrix ξ := (xi,j) overB, one defines |ξ| := sup |xi,j |, v(A) := min{v(xi,j)}
and ξ(p) := (xpi,j). As in [1], § 2.1, one can show:

For fixed coordinates κ, expressing ϕ′a and ϕa with respect to the coordinates
κ′ and κ, respectively, yields ϕa(z) =

∑da

i=0 fi(a)z
(qi) for some da ∈ N, fi(a) ∈

Md(B) and ϕ′a = f0(a) such that f0(a)−a is nilpotent. As in [1], § 2.1, one can
show the following:

Lemma 9.10 There exists a unique sequence of matrices (en) in Md(B) with
e0 = id, limn→∞ log q−n|en| = −∞ such that for each a ∈ A, the rigid analytic
function expU,E : Bd → Bd : z 7→

∑
n≥0 enz

(qn) satisfies

expU,E ◦ϕ′a = ϕa ◦ expU,E .

The existence of such an exponential function as a formal power series can be
obtained by an argument similar to the one given in [23], Sect. 4.6, however
one has to work with vectors and matrices over B instead of scalars over a
field. Because we assume that B is reduced, it is possible to reduce the global
convergence proof to a pointwise computation - where one makes use of the
fact that B is equipped with the supremum norm. The following sublemma on
linear algebra allows it to make pointwise use of the proof in [1], § 2.1. Details
of the proof of the lemma and the subsequent sublemma are left to the reader.
It is in fact possible to prove the above lemma without the assumption that B
is reduced. A full proof is given in forthcoming work by Hartl, cf. [25].

Sublemma 9.11 Suppose F is a complete R-valued field of positive charac-
teristic with valuation | | : F → R. Let e ∈ GLd(F ) be a matrix such that
e − id is nilpotent and let Md(F ) be a normed vector space under |(αi,j)|′ :=
supi,j |αi,j |. Then there exists α ∈ GLd(F ) with |α|′ = 1 = |α−1| and such that
e1 := α−1eα(q) is upper triangular with ones on the diagonal.

Furthermore, there exists β ∈ GLd(F ) with |β|′, |β−1|′ ≤ (|e|′)d such that
e2 := β−1fβ(q) is again upper triangular with ones on the diagonal and satisfies
|e2|′ = |e−1

2 |′ = 1.

As the expU,E in the previous lemma are unique, patching yields:

Proposition 9.12 There exists a unique morphism expE : Lie(E) → E of rigid
spaces such that for all ξ ∈ Lie(E) one has expE(ϕ′aξ) = ϕa(expE ξ) and such
that on any affinoid U = SpmB of X which trivializes E, and for any coordinates
of E|U , the morphism expE|U takes the form given in the previous lemma.

For various constructions below, we choose a non-constant a ∈ A and a uni-
formizer π ∈ K∞ such that a = πv∞(a). (To obtain such a pair (a, π) one can
use the Riemann-Roch theorem.) Via a, we regard A as an algebra over k[T ]
by mapping T to a, so that the map induces a finite, possibly ramified cover
C → P1. Let r′ be the degree of this cover. The place ∞ of C is the only place
above the infinite place of P1.

In the sequel, we will need the following technical lemma:

Lemma 9.13 The action ϕ′ : A→ End(Lie E) extends uniquely to a continuous
action of K∞.

Proof: Because K∞ = A ⊗k[a] k((1/a)), we may assume for the proof that
A = k[T ]. Let θ be the image of T in K∞. Furthermore, we may work lo-
cally, since any continuous extension will be unique. Write X = SpmB and
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ϕ′T = θ(I + N) with a nilpotent matrix N ∈ Md(B). For n ∈ N, we define
ϕ′T−n := θ−n

∑r−1
i=0

(−n
i

)
N i. Then |ϕ′T−n | ≤ |θ|−n ·maxi=0,...,r−1{|N i|}, so that

limn→∞ |ϕ′T−n | = 0. We define the action of
∑
n�∞ anT

n on Lie E as the endo-
morphism ∑

n�∞
anθ

n
r−1∑
i=0

(
−n
i

)
N i ∈Md(B).

The sum converges because |θ−1| < 1. Continuity of the endomorphism is easily
established. For the uniqueness, observe that by continuity it suffices to show
that any two extensions ϕ′ and ϕ̃′ take the same values on {Tn : n ∈ Z}. But
since both are ring homomorphisms and since ϕ′T is invertible, this assertion is
obvious.

It will also be useful to have locally a rigid analytic inverse of expE .

Lemma 9.14 For each affinoid U which trivializes E and any coordinates κ,
there exists a unique sequence of matrices (ln) in Md(B) such that logU,E : z 7→∑
n≥0 lnz

(qn) converges on a neighborhood V of 0 ∈ B and such that

expU,E ◦ logU,E = id on V.

Proof: We first consider the formal equation∑
n≥0

enz
(qn) ◦

∑
n≥0

lnz
(qn) = z.

Because e0 = id, it yields the recursive equations

l0 = id, ln = −(e1l
(q)
n−1 + e2l

(q2)
n−2 + . . .+ enl

(qn)
0 ).

In particular, if logE exists as an analytic function, it will clearly be unique.
Define vn := minm=0,...,n{v(lm)/qm} and set c := mini∈N0 v(ei) ≤ 0. The

above recursive formulas for the ln imply that vn+1 ≥ vn + c/qn, and hence
that vn ≥ cq/(q − 1) =: c′ for all n ∈ N0. Thus the formally defined series∑
n≥0 lnz

(qn) converges for v(z) > c′, and the proof of the lemma is complete.

Definition 9.15 Define H∗(E) as the kernel of expE in the vector bundle Lie E.

Clearly there is an action of A on H∗(E) induced from ϕ′ on Lie E .

Lemma 9.16 For any connected affinoid subdomain U of X, the set of sections
Γ(U,H∗(E)) is a projective A-module of rank not exceeding r.

Proof: Let x be an L′-valued point in U for a finite extension L′ of L, and let
Ex be the stalk of E at x. This is an A-module in the sense of Anderson.

By the explicit inverse to expE constructed in the previous lemma, it follows
that infx∈U |s(x) − s′(x)| > 0 for any distinct sections s, s′ ∈ Γ(U,H∗(E)).
Combining this with the connectedness of U yields that the map

Γ(U,H∗(E))→ H∗(Ex) : s 7→ s(x)

is an injective map of A-modules. By [1], Lem. 2.4.1, the module H∗(Ex) is free
over k[T ] of rank at most r′r, and hence projective over A of rank at most r.
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Note that in the course of the proof of Lemma 9.16, we showed that for
connected affinoid U the specialization map Γ(U,H∗(E))→ H∗(Ex) is injective
for all points x ∈ U .

Definition 9.17 A family of A-modules E of rank r is globally uniformizable
on X if Γ(X,H∗(E)) is a projective A-module of rank r and if for all x ∈ X the
map

Γ(X,H∗(E))→ H∗(Ex)
is an isomorphism.

A rigid τ -sheaf F̃ on X over DA is called trivial if on each connected com-
ponent X′ of X, there exists a projective finitely generated A-module PX′ such
that F̃ |X′×DA

∼= 1̃lX′,DA
⊗A PX′ .

A rigid τ -sheaf F̃ on X over A is called globally uniformizable if F̃DA-rig is
trivial. A rigid crystal is called globally uniformizable, if it is representable by
a globally uniformizable rigid τ -sheaf.

If X is a finite set of points, then we simply speak of uniformizability instead
of global uniformizability.

Remark 9.18 In [1], uniformizability is defined be requiring the exponential
map to be surjective. It is easy to see that this is only pointwise a good def-
inition. We therefore used an equivalent, more appropriate condition in our
definition of global uniformizability.

The following is the main result of this subsection.

Theorem 9.19 For a family of A-modules E on X of rank r the following are
equivalent:

(i) E is globally uniformizable.

(ii) The family M(E) of rigid A-motives on X is globally uniformizable.

(iii) M̃(E) is trivial.

Before we come to the proof, we state two corollaries. Fix an admissible K ⊂
GL2(Af ). Recall that on page 44, we defined a Drinfeld-module (ϕ(K), ψ(K))
with a level K-structure on ΩK from the local system (L,Λ, s, ψ). In particular,
ϕ(K) is by its very definition globally uniformizable on ΩK. The lattice on Ωg,
g ∈ GL2(Af ), which defines ϕ(K), is given by Λg = Â2g−1∩K2. Recall that we
defined F̃(K) as the rigid family of A-motives on ΩK corresponding to ϕ(K).

Corollary 9.20 The rigid τ -sheaf F̃(K)DA-rig is trivial on ΩK. On the con-
nected component Ωg ⊂ ΩK it is isomorphic to 1̃lΩg,DA

⊗A HomA(Λg,ΩA).

The proof is given at the end of this section after that of Theorem 9.19.

Corollary 9.21 Let UK be the standard cover of M
rig

K for an admissible K.

Assume that U ∈ UK does not contain a cusp. Then FDA-rig
K

∣∣∣
U

is globally uni-
formizable.

Proof: An affinoid U ∈ UK which does not contain a cusp corresponds to a
stable simplex t of the Bruhat-Tits tree of GL2(A). The stability of t implies
that there is an isomorphism between an affinoid V of ΩK and U in such a
way that FDA-rig

K |U×DA
is isomorphic to F̃(K)DA-rig

|V×DA
. But the latter is globally

uniformizable by the previous corollary.
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We now start with the preparations for the proof of Theorem 9.19, which is
quite similar to [1], § 2.

Definition 9.22 A topological A-module T is a commutative topological group
equipped with an A-module structure in such a way that for all a ∈ A the map
f 7→ af : T→ T is continuous.

Given topological A-modules T,T′, let Homc
A(T,T′) denote the group of con-

tinuous homomorphisms T→ T′ which are compatible with the A-multiplication.

Let E be as above and U = SpmB a trivialization with coordinates κ. Then
(Bd, ϕ) is a topological A-module. Furthermore the sequence

0 −→ A −→ K∞ −→ K∞/A −→ 0 (44)

is a short exact sequence of topological A-modules.

Proposition 9.23 Applying the functor Homc
A( , (Bd, ϕ)) to the short sequence

(44) yields a left exact sequence which is isomorphic to

0 −→ Γ(U,H∗(E)) −→ (Bd, ϕ′)
expU,E−→ (Bd, ϕ). (45)

Proof: Clearly Homc
A(A, (Bd, ϕ)) ∼= (Bd, ϕ). We claim that the map

Lie E → Homc
A(K∞, (Bd, ϕ)) : x 7→ (ψx : y 7→ expE(xy)) (46)

is an isomorphism. The claim easily implies the proposition, and so we will now
prove it.

The well-definedness of the map given follows from Lemma 9.13. Continuity
of ψx follows from the continuity of expU,E and that of the action ofK∞ on Lie E .
That each ψx is an A-module map is a consequence of the defining property of
expE . To prove injectivity, we assume ψx = ψx′ for x, x′ ∈ B. It follows that
expU,E((x− x′)y) = 0 for all y ∈ K∞. Choosing y sufficiently close to zero, but
different from zero, we may assume that |(x − x′)y| < c, where c is the radius
of convergence of logU,E . Because expE has logU,E as a local inverse, we must
have (x− x′)y = 0, and hence x = x′ because y ∈ K∞ r {0}.

Finally to prove surjectivity, let ψ be an element in Homc
A(K∞, (Bd, ϕ)),

and define wn := ψ(a−n), where a is defined above Lemma 9.13. Because the
a−n tend to zero on U , there exists an n0 such that |wn| < c for n ≥ n0. Define
xn := logU,E(wn) for n ≥ n0. It follows that ϕ′amxn = xn−m for n,m ∈ N such
that n−m ≥ n0. Defining x := ϕ′anxn for n ≥ n0, one has the equality ψx = ψ
on the sequence {a−n : n ≥ n0}. Hence by continuity and the homomorphism
property of ψ and ψx, the two morphisms must agree.

Definition 9.24 Given a topological A-module T, we denote by Homc(T, B) the
group of continuous homomorphisms f : T → Ga(B) equipped with the unique
structure of left B{τ} ⊗A-module for which

(bf)(c) = b(f(c)), (af)(c) = f(ac), (τf)(c) = f(c)q,

for all b ∈ B, f ∈ Homc(T, B) and c ∈ T.

Applying the functor Homc( , B) to the exact sequence (44), which is split
exact as a sequence of topological groups, yields an exact sequence

0 −→ Z1 −→ Z2 −→ Z3 −→ 0
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of left B{τ} ⊗A-modules, where

Z1 := Homc(K∞/A,B),
Z2 := Homc(K∞, B),
Z3 := Homc(A,B).

We omit the proof of the following result which is straightforward, if tedious.

Lemma 9.25 For any of the topological A-modules T in the sequence (44), the
map

Homc
A(T, (Bd, ϕ)) −→ HomB{τ}⊗A(Γ(U,M(E)),Homc(T, B)) :

f 7→ (m 7→ (c 7→ m(f(c))))

is an isomorphism.

Abbreviate BDA
:= B⊗̂A〈〈T 〉〉 := B⊗̂L(A⊗k[T ] L〈〈T 〉〉) and define BDA

{τ}
as the set of finite formal sums B{τ}⊗̂A〈〈T 〉〉 equipped with the addition law(∑

j

fjτ
j
)

+
(∑

j

gjτ
j
)

=
(∑

j

(fj + gj)τ j
)

and the multiplication(∑
j

fjτ
j
)(∑

j′

gj′τ
j′
)

=
(∑

j

∑
j′

(fjg
(qj)
j′ )τ j+j

′
)
,

where the fj , gj′ are in B⊗̂A〈〈T 〉〉.
Let a1, . . . , as be a k[T ]-basis of A.

Lemma 9.26 The B{τ}⊗A-module Z1 carries a unique structure of BDA
{τ}-

module such that
(fh)(c) =

∑
i,j

bi,j ⊗ aih(T jc)

for all h ∈ Z1, c ∈ K∞/A and f =
∑
i≥0

∑s
j=1 bi,j ⊗ ajT i ∈ B⊗̂A〈〈T 〉〉.

Proof: The expressions h(ajT ic) are well-defined for i ∈ Z, j = 1, . . . , r by
Lemma 9.13. Because K∞/A is compact and h is continuous, the image of h is
bounded. As bi,j → 0 for i → ∞, the series

∑
i,j bi,jh(ajT

ic) converges to an
element in B. The well-definedness of the action of BDA

{τ} is now clear, and we
leave it to the reader to check that this defines the structure of a BDA

{τ}-module
on Z1.

Let Res∞ : ΩK∞ → k∞ denote the residue map at ∞. A topological k-
basis of K∞/A is defined as a countable sequence of elements (ai)i∈I ⊂ K∞/A
converging to zero such that every element in K∞/A can be written uniquely
as a converging sum

∑
i,j αiai with αi ∈ k.

Lemma 9.27 The bilinear map

ΩA ×K∞ −→ k∞ : (ω, b) 7→ Res∞(bω)

vanishes on ΩA ×A and hence induces a map

〈 , 〉 : ΩA ×K∞/A −→ k∞ : (ω, b) 7→ Res∞(bω).

Let furthermore ω1, . . . , ωr be a basis of ΩA over k[T ]. Then there exists a
uniquely determined topological k-basis {ai,j}i∈N0,j∈{1,...,r} of K∞/A determined
by the condition

〈T i
′
ωj′ , ai,j〉 = δi,i′δj,j′ .
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Proof: For ω ∈ ΩK and a ∈ K one has∑
x∈C

Resx(aω) = 0,

where Resx denotes the residue map at x. If ω lies in ΩA and a in A, then all
the residues except for the one at ∞ are zero. Hence the above formula implies
Res∞(aω) = 0, as asserted.

For the second part of the lemma, note that ΩA = lim−→n→∞H0(C,ΩC(n∞)),
and by Serre duality we have

H0(C,ΩC(n∞))∗ ∼= H1(C,OC(−n∞)). (47)

Let us fix m� 0 and consider the cohomology sequence induced by

0 −→ OC(−n∞) −→ OC(m∞) −→ OC(m∞)/OC(−n∞) =: Fm,n −→ 0

for n� 0:

0 // H0(C,OC(m∞))

∼=
��

// H0(C,Fm,n) //

∼=
��

H1(C,OC(−n∞)) // 0

0 // {a ∈ A : deg a ≤ m} // π−mA∞/πnA∞ // H1(C,OC(−n∞)) // 0

If we first pass to the inverse limit, as n → ∞, and then to the direct limit, as
m→∞, we obtain the short exact sequence

0 −→ A −→ K∞ −→ lim←−
n→∞

H1(C,OC(−n∞)) −→ 0.

So via Serre duality, the complete dual of ΩA is identified with K∞/A. One
can make this explicit using repartitions as in [49]. Arguing in a similar way
as in the first paragraph, one finds that this duality is simply given by Res∞.
The existence and uniqueness of a topological k-basis of K∞/A with the desired
properties can now be obtained by studying the inverse system which arises from
(47) and by using the fact that the duality is given by Res∞. This is simple and
left to the reader.

Lemma 9.28 The map

(B ⊗ ΩA)⊗̂LL〈〈T 〉〉 −→ Z1∑
i,j

bi,j ⊗ ωjT i 7→
(
c 7→

∑
i,j

bi,j Res∞(ωjT ic)
)
,

where bi,j → 0 for i → ∞, defines an isomorphism of BDA
{τ}-modules, where

the τ -action on (B ⊗ ΩA)⊗̂L〈〈T 〉〉 is defined by τ(b⊗ ωjT i) = bq ⊗ ωjT i.

Proof: Because each element of (B⊗ΩA)⊗̂L〈〈T 〉〉 is uniquely represented as a
sum

∑
i,j bi,j⊗ωjT i, the well-definedness of the above map is clear. Furthermore

it is easy to see that it defines an injective morphism of BDA
{τ}-modules.

To show surjectivity, given f ∈ Z1 = Homc(K∞/A,B) we define elements
bi,j := f(ai,j), where the ai,j form a topological k-basis of K∞/A as constructed
in the previous lemma. Since the ai,j converge to zero for i→∞, so do the bi,j ,
and we may define

g :=
∑
i,j

bi,j ⊗ ωjT i ∈ (B ⊗ ΩA)⊗̂L〈〈T 〉〉.

Clearly the image of g in Z1 maps ai,j to bi,j , and because the ai,j form a
topological k-basis, it follows that the image of g agrees with f .
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We have 1̃lB,DA
⊗A ΩA ∼= (B ⊗ΩA)⊗̂L〈〈T 〉〉, so that by the previous lemma

and patching the following result is immediate:

Corollary 9.29 For connected X, there are natural isomorphisms

Γ(X,H∗(E)) ∼= Hom gCohτ (X,A)
(M(E), 1̃lX,DA

⊗A ΩA)

∼= Hom gCohτ (X,DA)
(M̃(E), 1̃lX,DA

⊗A ΩA).

We now give the proof of the main result:

Proof of Theorem 9.19: For the proof, we may assume that X is connected.
As the equivalence of (ii) and (iii) is obvious from the definitions, we only prove
(i)⇔(iii). We first prove (iii)⇒(i). So let us assume that M̃(E) is trivial, so that
M̃(E) ∼= 1̃lX,DA

⊗A P . Because M̃(E) is of rank r, it follows that P is of rank
r over A. We display the situation in the following diagram, where the vertical
maps are specialization maps:

Γ(X,H∗(E))

��

∼=
Cor. 9.29

// Hom
C̃ohτ (X,DA)

(1̃lX,DA
⊗AP, 1̃lX,DA

⊗AΩA)
∼= //

��

HomA(P,ΩA)

��
H∗(Ex)

∼=
Cor. 9.29

// Hom
C̃ohτ ({x},DA)

(1̃l{x},DA
⊗AP, 1̃l{x},DA

⊗AΩA)
∼= // HomA(P,ΩA).

Since the right vertical map is clearly an isomorphism, it follows that E is
globally uniformizable on X.

For the converse (i)⇒(iii), let P̃ := Γ(X,H∗(E)) and define

b : M̃(E) −→ HomA(P̃ , 1̃lX,DA
⊗A ΩA) ∼= 1̃lX,DA

⊗A HomA(P̃ ,ΩA)

by mapping (m, f) ∈ M̃(E)×P̃ to f(m) ∈ 1̃lX,DA
⊗AΩA. Let us regard the map b

over k[T ] where k[T ]→ A is a flat morphism of degree r′. Using our assumption
that the H∗(Ex) are of projective of rank r over A, and hence projective of rank
rr′ over k[T ], [1], 2.11, shows that the fibers bx of b are isomorphisms for any
x. Because X × Dk[T ] is a reduced rigid space, it follows that b itself is an
isomorphism. Therefore M̃(E) is isomorphic to 1̃lX,DA

⊗A HomA(P̃ ,ΩA) and
the proof of the proposition is complete.

Proof of of Corollary 9.20: To prove the corollary, it will suffice to prove the
second assertion. By its very construction, the Drinfeld-A-module ϕ(K) is a
globally uniformizable A-motive of rank 2 in the sense of Definition 9.17. Thus
by the above theorem, we may identify the restriction of F(K)DA-rig to the
connected rigid space Ωg with 1̃lΩg,DA

⊗A Pg for some projective A-module Pg.
We have the following chain of isomorphisms:

Λg
Def. ofϕ(K)
∼= H∗(Ωg, ϕ(K)|Ωg

)
Cor. 9.29∼= Hom

C̃ohτ (Ωg,DA)
(1̃lΩg,DA

⊗A Pg, 1̃lΩg,DA
⊗A ΩA)

∼= HomA(Pg,ΩA).

This easily yields Pg ∼= HomA(Λg,ΩA), as asserted.
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10 An Eichler-Shimura isomorphism

In this section we fix an admissible subgroup K of GL2(Â) of minimal conductor
n. We also fix a set of representatives {tν} of ClK and let xν be the correspond-
ing elements in GL2(Af ) as in (14). By admissibility of K, the corresponding
arithmetic groups Γν will all be p′-torsion free. Recall that b∗K∞ : SpecK∞ →
SpecA(n) is the base change morphism and gK :MK → SpecA(n) the structure
morphism. Also, we recall that in Section 9 we defined F (n)

K = Symn FK. More-
over, we use the convention that for a τ -sheaf or crystal F on MK, considered
as a scheme over SpecA(n), we denote by FDA-rig the object (b∗K∞F)DA-rig.

The basic idea is that the τ -sheaf FK plays a similar role for Drinfeld-
modular forms, as does R1

étfΓ̃Ql for classical modular forms, where fΓ̃ is the
map from the universal elliptic curve with level-Γ̃ structure to the corresponding
moduli space. For example, for any proper non-zero ideal n of A, the étale
sheaf (FK⊗A A/n)ét describes the space of n-torsion points as a Galois module
in precisely the same way as R1

étfΓ̃Z/(lm) describes the Galois module of lm-
torsion points on the universal elliptic curve of level Γ̃. However FK is a global
and not a formal object, and so it carries indeed more information than the
étale sheaf R1

étfΓ̃Ql.
Carrying on with this analogy, it is natural to consider the following object:

Definition 10.1 The A-crystal of Drinfeld cusp forms on SpecA(n) of weight
n+ 2 and level K is defined as

Sn+2(K) := R1gK!F (n)
K .

We define the rigid DA-crystal on SpmK∞ of Drinfeld cusp forms of weight
n+ 2 and level K as

SDA-rig
n+2 (K) := Sn+2(K)DA-rig.

Let v be a place of K. We define the constructible étale v-adic sheaf on SpecA(n)
of Drinfeld cusp forms of weight n+ 2 and level K as

S ét,v
n+2(K) := lim←−

m

(Sn+2(K)/pmv Sn+2(K))ét.

Because extension by zero and commutes with pullbacks, taking symmetric
powers and analytification, we have:

Proposition 10.2 SDA-rig
n+2 (K) ∼= H1(M

rig

K,K∞ , jK! Symn(FDA-rig
K )).

Note also that by Theorem 7.18, there is a canonical isomorphism

S ét,v
n+2(K) ∼= R1

étgn!(Symn F ét,v
K ).

Recall that in Proposition 7.5, we defined for a crystal F over A the A-
module Fτ as the set of global τ -invariant sections of any representing τ -sheaf.
The main theorem of this section is the following:

Theorem 10.3 For each admissible K, there is an isomorphism(
CSt
n (K, A)

)∗ ∼= (SDA−rig
n (K)

)τ
.

This is called the Eichler-Shimura isomorphism for Drinfeld cusp forms.
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10.1 The Eichler-Shimura map

To define the Eichler-Shimura map, we first give an explicit description of the
complex HomGL2(K)(C

st

K,•, M̄), for a local system M̄ of left modules forGL2(Af ).
Then we compute the cohomology module SDA-rig

n (K) via Čech cohomology for
the standard affinoid cover of M

rig

K and show that the complex obtained by
taking τ -invariants is directly isomorphic to HomGL2(K)(C

st

K,•, Vn(Λg)). This
easily yields an injective morphism(

CSt
n (K, A)

)∗
−→

(
SDA-rig
n (K)

)τ
,

the desired Eichler-Shimura map. It being an isomorphism will result from
analyzing n-torsion sheaves, and will be the subject of the following subsection.

Let M̄ = (M,Mg) be any local system of left modules for GL2(Af ). For
an explicit computation of HomGL2(K)(C

st

K,•, M̄), we make the following choices:
Let R0,ν and R1,ν denote sets of representatives stable vertices and edges of the
tree T × {xνK} with respect to Γν , cf. page 64. Furthermore we define Ro1,ν
as the set of all oriented edges e such that the associated non-oriented edge ē
lies in R1,ν . For each oriented edge e ∈ Ro1,ν with target t(e), we have a unique
vertex ve ∈ R0,ν and a unique γe ∈ Γν such that

t(e) = γeve.

Giving a function fi ∈ HomGL2(K)(C
st

K,i, M̄) is thus equivalent to

(a) giving f0([v]) for all v ∈
⋃
ν R0,ν , and f0([ē]) for all ē ∈

⋃
ν R1,ν , for i = 0,

and

(b) giving f1([e]) for all e ∈
⋃
ν R

o
1,ν , for i = 1.

This yields a commutative diagram

HomGL2(K)(C
st

K,0, M̄) //

∼=
��

HomGL2(K)(C
st

K,1, M̄)

∼=
��⊕

ν

(⊕
v∈R0,ν

Mxν
⊕
⊕

v∈R1,ν
Mxν

)
// ⊕

ν

(⊕
e∈Re

1,ν
Mxν

)
.

If f1 is the image of f0 under the boundary map, then

f1([e]) = f0([ē])− f0([t(e)]) = f0([ē])− γef0([ve]).

We recall that [ve] is zero if ve is unstable.

Let us now compute the Čech complex for the standard cover ŪK of M
rig

K
and the crystal jK!F (n),DA-rig, which computes the pushforward under RigK!

of F (n),DA-rig
K over the base SpmK∞. This cover, which was constructed in

Proposition 3.32 and Definition 4.17, can be described as follows:

(i) For each ē ∈
⋃
ν R1,ν one has an affinoid Uē,

(ii) For each v ∈
⋃
ν R0,ν one has an affinoid Uv,

(iii) For each cusp c of GL2(K)\ΩK one has an affinoid Uc.
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Let us choose an order on the elements of ŪK with respect to which all the
Uv and all the Uc are smaller than the Uē. Let I be the union of all sets R0,ν ,
R1,ν and the set of cusps. Then we have Ui ∩ Ui′ = ∅ for elements i < i′ of
I, unless i is a vertex or a cusp and i′ is an adjacent edge. If the intersection
is non-empty, it is an annulus. Furthermore in this case we define e to be the
edge ē with the orientation so that e points to v, respectively c and we define
Ue := Ui ∩ Ui′ . Finally, define

Mg := (F (n),DA-rig
K )τ|Ωg

Cor. 9.20∼= Symn(Hom(Λg,ΩA))

for any g ∈ GL2(Af ). This clearly yields a local system (M := Mg ⊗A K,Mg).

Lemma 10.4 Suppose X is a connected rigid space and j : U → X a Zariski
open immersion with U 6= X. If F̃ is a rigid τ -sheaf on X over DA which is
nilpotent on X− U. Then F̃τ = 0.

In particular (jK!(F (n),DA-rig
K )|Uc

)τ = 0 for each cusp c of MK.

Proof: The second assertion clearly follows from the first. So let I be an ideal
sheaf for a complement i : Z→ X of X r U. Choose m > 0 such that τm = 0 on
i∗F̃ . Suppose now that u is a τ -invariant of F̃ . Then, upon repeatedly applying
τm, we find that u lies in IqnF̃ for all n > 0. But the intersection of these
sheaves is clearly zero, and hence u = 0, as asserted.

The affinoids Uv and Uē can be described as suitable affinoids of the Ωxν
⊂

ΩK, namely those above the edge e, respectively vertex v of Txν . To make the
notation less confusing, we write U′t for the affinoid in ΩK corresponding to a
simplex t ∈ TK, and we use the isomorphisms Ut ∼= U′t for t ∈ R0 ∪ R1 to
describe the non-cuspidal affinoids of the cover ŪK. Furthermore, for i0 < i1 ,
we identify the intersection Ui0 ∩Ui1 with the corresponding affinoid subdomain
of U′i1 ⊂ ΩK, which we call U′i0i1 .

Thus given a j-cochain cj , we can define a value for each translate γU′i0...ij
as γcj(Ui0 ∩ . . .Uij ). This can be used to explicitly describe the restriction maps
needed for the Čech cover ŪK in terms of the combinatorics and restriction maps
on ΩK. Let us look at the restriction maps that occur in the first differential of
the Čech complex. Assume that we have v = i < ē = i′ for some vertex v which
is ‘adjacent’ to an edge e, i.e., so that we have t(e) = γeve and ve = v. Consider
the diagram

Uē

∼=
��

Ui ∩ Ui′ = Ue

∼=wwooooooooooo
∼=

''OOOOOOOOOOO
? _oo � � // Uv

∼=
��

U′ē U′ē ∩ U′t(e) ·γe

∼= //? _oo U′γeē ∩ U′v
� � // U′v.

On ΩK the restriction map from an affinoid to an affinoid subdomain for the
module

(Symn(F̃ΩK)DA-rig
Ωg

)τ ∼= Symn(HomA(Λg,ΩA))

is simply the identity. Furthermore the transition from U′ē ∩ U′t(e) to U′γeē ∩ U′v
is given by multiplication with γe. Thus the horizontal maps on the bottom
are well understood. The vertical arrows and the down-left arrow are used to
identify the sections on Uē, Uv and Ue. Based on this, we leave it to the reader
to verify the following simple fact:
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Say ci are i-cochain for i = 0, 1 such that c1 is the boundary of c0. Then for
e ∈ Ro1,ν , which say corresponds to i < i′ = ē, we have

c1(Ue) =
{

c0(Uē) if i is a cusp,
c0(Uē)− γec0(Uve

) otherwise. (48)

Thus we obtained the following commutative diagram for the τ -invariants of
the Čech cohomology for the sheaf jK!(F (n),DA-rig

K ) and the cover ŪK:

C0(ŪK, jK!F (n),DA-rig
K )τ //

∼=
��

C1(ŪK, jK!F (n),DA-rig
K )τ

∼=
��⊕

ν

(⊕
v∈R0

Mxν ⊕
⊕

v∈R1
Mxν

// ⊕
e∈Ro

1
Mxν

)
,

where the boundary map at the bottom is described by (48).
Comparing this with the description of HomGL2(K)(C

st

K,•, M̄) and using The-
orem 8.50 for the comparison of algebraic crystals and DA-crystals, we have
shown the following proposition:

Proposition 10.5 There is an isomorphism of complexes

HomGL2(K)(C
st

K,•, M̄) −→ C•(ŪK, jK!F (n),DA-rig
K )τ .

By invoking Lemma 5.47, the only non-vanishing cohomology of the complex
on the left is

(
CSt
n (K, A)

)∗
in degree one. Because any representing τ -sheaf of

jK!F (n)
K ) can be twisted arbitrarily often with the ideal sheaf of the cusps, one

has H0(ŪK, jK!F (n)
K ) = 0. Hence the right hand side in the above proposition

has its only non-vanishing cohomology in degree one. As taking τ -invariants is
left exact, this cohomology injects into H1(ŪK, jK!F (n),DA-rig

K )τ . Theorem 8.50
implies that the latter is isomorphic to(

H1(MK,K∞ , jK!F (n),DA-rig
K

)τ
,

and hence we have shown:

Corollary 10.6 The above isomorphism of complexes induces an injective map
of A-modules (

CSt
n (K, A)

)∗
↪−→

(
SDA-rig
n (K)

)τ
.

Definition 10.7 The map in the previous corollary is called the Eichler-Shimura
map for Drinfeld modular forms of level K and weight n.

10.2 Torsion points

It remains to show that the Eichler-Shimura map is an isomorphism. The
essential tool will be an analysis of the torsion points of ϕK and a result of
Pink, [40].

We first start with a lemma on Sn(K).

Lemma 10.8 The crystal Sn(K) is representable by a τ -module (N, τN ) on K∞
over A such that N is finitely generated and projective over K∞ ⊗k A, say of
rank r ∈ N0, and such that one has a short exact sequence

0 −→ K∞
σ ⊗K∞ N

τN−→ N −→ C −→ 0, (49)

for some τ -module (C, τC) such that C is finite over K∞.
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Proof: By its definition and Theorem 7.13 (d), the crystal Sn(K) is of pullback
type. Thus we can represent it by a τ -module (N ′, τ ′), where N ′ ∼= K∞⊗k Ar

′
.

We consider the sequence of K∞ ⊗A-linear maps

0 −→ C ′ −→ K∞
σ ⊗K∞ N ′

τ ′−→ N ′ −→ C ′′ −→ 0.

If τ ′ is not injective, then the image of τ ′ is of smaller rank as N ′. Since
(Im τ ′, τ ′| Im τ ′) is nil-isomorphic to (N ′, τ ′), an inductive argument yields the
desired (N, τN ).

Lemma 10.9 Let n be an ideal of A and DA the coordinate ring of DA. Then
DA/nDA ∼= K∞ ⊗A A/n.

The proof is easily reduced to the case A = k[T ]. In this situation, the important
observation is that points of Spec k[t] r {0} lie on the rim of the unit disc
SpmK∞〈〈T 〉〉. Details are left to the reader.

The following simple lemma bounds the rank of the τ -invariants in terms of
the rank of the underlying module.

Lemma 10.10 Suppose (N, τ) is a locally free τ -module on K∞ over A of rank
r. Then for each proper non-zero ideal n of A, the A/n-module (N ⊗K∞⊗A
(Kalg
∞ ⊗ A/n))τ is free of some rank rn ≤ r, and ((N, τ)DA-rig)τ is a projective

A-module of rank at most minn rn.

Proof: Fix an ideal n as above. By Lang’s theorem, cf. [1], proof of Lem. 1.8.2,
it easily follows that (N ⊗K∞⊗A (Kalg

∞ ⊗ A/n))τ is free over A/n of some rank
rn ≤ r. By the above lemma, DA/nDA ∼= K∞ ⊗A/n, and furthermore

(N, τ)DA-rig ⊗DA/nDA ∼= (N, τ)⊗A A/n.

Since NDA-rig is A-torsion free, the set of its τ -invariants is A-torsion free.
Assume that its rank was greater than r. Then the set of τ -invariants of N ⊗A
A/n would contain an A/n-module of rank at least r + 1. This contradicts the
bound rn ≤ r.

Proposition 10.11 Let N be the τ -module (N, τN ) of Lemma 10.8. Then for
each p ∈ Max(A), the induced morphism τ on N⊗AA/p is an isomorphism and
furthermore NDA-rig is uniformizable.

Proof: Let r denote the rank of N . By Lemma 10.10 we know that (NDA-rig)τ

is a projective A-module of rank r′ ≤ r. It contains the submodule CSt
n (K, A)

whose rank we denote by r′′. We claim that r′′ = r.
To prove the claim, we fix any proper non-zero ideal n of A and consider

the étale sheaf F := b∗K∞((j!F (n−2)
K )⊗A/n)ét. By Corollary 7.20, this is simply

the sheaf of A/n-torsion points of ϕK, raised to the (n− 2)-th symmetric power
and extended by zero at the cusps. Because K∞ is of generic characteristic, the
sheaf of n-torsion points corresponds to a Galois cover of MK,K∞ .

By the previous lemma, (Sn(K) ⊗ A/n)ét has global sections on Kalg
∞ with

rank at most r. By Theorem 7.18, which described the functorialities of F 7→
F ét, we have

(Sn(K)⊗A/n)ét(SpecKalg
∞ ) ∼= H1

ét(MK,Kalg
∞
,F).
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We claim that H1
ét(MK,K∞ ,F) is free over A/n of rank r′′, independently of

n. Let us see how this second claim implies the first one. The sequence (49)
shows that for almost all maximal ideals p, the map τ on N ⊗A A/p is an
isomorphism. Hence for n = p it follows that r = r′′, as asserted and we have
shown uniformizability. But the second claim together with r = r′′ also implies
our second assertion, and so to complete the proof of the proposition, it remains
to prove the second claim.

For this, we quote the following result from Pink, [40], Thm. 0.2, Def. 5.3,
Prop. 5.6 (a).

Theorem 10.12 Suppose X is an irreducible smooth projective curve over an
algebraically closed field of characteristic p. Let G be a constructible étale sheaf
of k-vector spaces on X. Let χ(X,G) denote the Euler-Poincaré characteristic
of G. Assume that there exists an irreducible finite Galois cover π : Y → X such
that

(a) the generic monodromy of π∗G is a p-group,

(b) Y is ordinary,

(c) all local ramification groups at x ∈ X of the generic fiber Gη are p-groups.

Assume further that there is a dense open immersion j : U → X, such that j∗G
is lisse and G ∼= j!j

∗G. Let h(X) = card(X r U). Then

χ(X,G) = (1− g(X)− h(X)) dim Gη.

As explained in [40], p. 3, the schemes X := MK,Kalg
∞

are ordinary for any
admissible K. Furthermore if K′ /K are admissible, then the induced morphism

πK,K′ : MK′,Kalg
∞
−→MK,Kalg

∞

is a Galois cover with Galois group K/K′. In particular, the latter is satisfied
for the normal subgroup K(n) ∩ K of K for any level n-structure. Moreover the
ramification of πK,K′ occurs only at the cusps and is a finite p-group. Further-
more, for F as above, the generic monodromy of π∗K,K(n)∩KF is trivial. Hence we
find that

χ(X,F) = (1− g(X)− h(X)) dim Fη,

with X = MK,Kalg
∞

, and where h(X) is the number of cusps of X and dim Fη =
(n− 1) dimk A/n. Because H0

ét(X,F) = 0, we have shown that

dimkH
1
ét(X,F) = (n− 1)(g(X) + h(X)− 1) dimk A/n.

By Proposition 5.4 and the comparison isomorphisms in Section 5, we also
have

rankACSt(K, A) = (n− 1)(g(X) + h(X)− 1)

for the projective A-module CSt(K, A). Therefore the k-dimension of the mod-
ule CSt(K, A) ⊗A A/n is given by (n − 1)(g(X) + h(X) − 1) dimk A/n. As in
the proof of Lemma 10.10, the module CSt(K, A) ⊗A A/n is a submodule of
H1

ét(MK,K∞ ,F), which in turn is a submodule of H1
ét(X,F). Hence by counting

dimensions, all these modules must agree, and in particular the second claim is
shown.
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As a corollary to the above proposition, we obtain the following:

Corollary 10.13 The crystals b∗K∞Sn(K) on SpecK∞ are uniformizable in the
sense of Definition 9.17.

For the proof of Theorem 10.3, we need the following lemma:

Lemma 10.14 For F̃ ∈ C̃ohτ (X,DA) we consider the morphism

F̃τ ⊗A (A/nA) α−→ (F̃ ⊗DA
DA/nDA)τ ,

where n 6= 0 is an ideal of A. The following assertions hold:

(i) If F̃ is flat over A. Then α is a monomorphism.

(ii) If F̃ = 1̃lX,DA
, then α is an isomorphism.

(iii) If X is connected and there is a point x ∈ X such that the fiber of F̃ at x
is nilpotent, then the domain and range of α are both zero.

Proof: For part (i), we may assume that n is principal, say generated by (a).
Let us first show that

F̃τ ∩ Γ(X, aF̃) = a(F̃)τ .

The inclusion ⊃ is obvious, and to show ⊂, we let f be an element of the left
hand side. This means that there exists g ∈ Γ(X, F̃) such that ag = f and that
fτ = f . But then a(g − gτ ) = 0 and hence g = gτ because F̃ is A-torsion free.
This shows that f = ag lies in the right hand side. By what we have just shown,
it follows that (aF̃)τ = a(F̃)τ . The assertion in (i) now follows by applying the
Snake lemma to

0 // aF̃ //

1−τ
��

F̃ //

1−τ
��

F̃ ⊗DA
DA/aDA //

1−τ
��

0

0 // aF̃ // F̃ // F̃ ⊗DA
DA/aDA // 0.

Part (ii) is a simple explicit computation and left to the reader. In part (iii),
the domain of α is zero by Lemma 10.4. To show that the range is zero as well,
one needs to prove an obvious modification of Lemma 10.4. Details are left to
the reader.

Proof of Theorem 10.3: Let n be a non-zero ideal of A. We use the following
abbreviations: M̃i := Ci(ŪK, jK!F (n),DA-rig

K ), M̃i
/n := M̃i ⊗DA

DA/nDA and

H := H1(MK,K∞ , b
∗
K∞

jK!F (n)
K ). Consider the following diagram:

0 // (M0)τ ⊗A A/n

∼=

��

// (M1)τ ⊗A A/n

∼=

��

//
(
HDA-rig

)τ
⊗A A/n

_�

��

0 // (M0
/n)τ // (M1

/n)τ //
(
H⊗DA

DA/nDA

)τ
,

where by the previous lemma, the left and middle vertical maps are isomor-
phisms and the right vertical map is a monomorphism.
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In the previous proof, we had shown that (H⊗DA
DA/nDA)τ is a free A/n-

module of the same rank as CSt
n (K, A)∗. Because the latter module is flat over

A, the short exact sequence

0 −→ HomGL2(K)(C
st

K,0, M̄) −→ HomGL2(K)(C
st

K,1, M̄) −→ CSt
n (K, A)∗ −→ 0.

remains exact after tensoring withA/n overA. Let us denote this latter sequence
temporarily by (∗). Then the left and middle terms in (∗) are isomorphic to
the left and middle terms of the left exact sequences displayed in the diagram
above. Therefore counting dimensions over k, it follows that the second row in
the above diagram is short exact. But then clearly the first row must be short
exact as well, and this for all non-zero ideals n of A. This implies that

0 −→ (M0)τ −→ (M1)τ −→ (H1(MK,K∞ , jK!F (n),DA-rig
K )τ −→ 0

is exact, and hence the monomorphism in Corollary 10.6 is an isomorphism.

Remark 10.15 Recall that sn(K) is the dimension of Sn(K). The above proof
shows ((b∗K∞Sn(K))⊗A/n)ét is locally free over A/n of rank sn(K), and further-
more that any locally free τ -sheaf which represents (b∗KSn(K)) and on which τ
is injective, is of rank sn(K), too.
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11 Maximal extensions

In this section we will develop a notion necessary to formulate, in the following
section, an Eichler-Shimura isomorphism for double cusp forms, namely the
notion of maximal extension of a coherent τ -sheaf, respectively crystal.

Let j : U → X be an open immersion. The idea is that a crystal F on U has
two natural extensions to X. One extension is j!F , which is in an obvious sense
the smallest one. The other is the direct limit j#F of all coherent τ -subsheaves
of j∗F , where we represent F by a τ -sheaf. The latter is called the maximal
extension provided it is coherent. The functors j! and j# have properties similar
to the corresponding functors j! and j∗ in étale cohomology.

Building on work of Gardeyn, [13], Ch. 1, in Subsection 11.1 we introduce the
main concepts and prove some basic results. In particular, we give a criterion
for j#F to be coherent. In Subsection 11.2, we will study the maximal extension
of the universal τ -sheaf F (n)

K under the open immersion jK: MK ↪→ MK. This
yields the τ -sheaf jK#F (n)

K which, considered as a crystal, contains jK!F (n)
K . The

discrepancy will turn out to be the essentially the unit crystal supported on the
cusps. Again, some of the basic results we need are due to Gardeyn, [13], Ch. 1
and 6.

Subsection 11.3 compares j# for the étale and crystalline sites. In Sub-
section 11.4 we briefly discuss maximal extensions for rigid analytic τ -sheaves.
This is applied in the last subsection to compute the τ -invariants of the maximal
extension of Symn F̃(K) near the cusps.

11.1 Maximal extensions of τ-sheaves and crystals

Let us fix throughout this subsection an open immersion j : U → X, a closed
complement i : Z → Ū in the Zariski closure Ū ⊂ X of U and a coherent τ -sheaf
(respectively crystal) F on U . Motivated by some work of Gardeyn, [13], Ch. 1,
we will introduce the notion of a maximal extension of F . Moreover we provide
some results on the existence of maximal extensions that will be needed in the
subsequent sections.

The definition of a maximal extension, given below, generalizes [13], Def. 1.12,
and is modeled after the Néron mapping property.

Definition 11.1 Any G ∈ Cohτ (X,A) with j∗G ∼= F is called an extension
of F .

We define j#F ⊂ j∗F ∈ QCohτ (X,A) as the union of all extensions G of
F , or equivalently as the union of all coherent τ -subsheaves of j∗G.

If j#F is coherent, it is called the maximal extension of F with respect to j.

If a maximal extension exists, it is unique up to unique isomorphism.

Remark 11.2 For F = (F , 0), one has j#F = (j∗F , 0) and thus in general
j#F is not coherent. Note also that for codimXZ = 1, the functor F 7→ j#F is
not exact.

The following gives an intrinsic characterization of j#F :

Proposition 11.3 A coherent τ -sheaf G on X is a maximal extension of F if
and only if for all H ∈ Cohτ (X,A), the canonical map

HomCohτ (X,A)(H,G) −→ HomCohτ (U,A)(j∗H,F)

is an isomorphism.
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Proof: It clearly suffices to show that j#F is characterized by the properties
that a) for all H ∈ Cohτ (X,A) the canonical map

HomQCohτ (X,A)(H, j#F) −→ HomCohτ (U,A)(j∗H,F)

is an isomorphism and b) j#F is an inductive limit of coherent τ -sheaves.
By its very definition j#F satisfies b). For a), observe that the isomorphism

holds for j∗F in place of j#F . Because all the H are coherent, and hence so is
their image in j∗F , the isomorphism holds for j#F as well. It remains to show
that j#F is determined by a) and b) up to unique isomorphism.

Let G′ be another quasi-coherent τ -sheaf which satisfies a) and b). Without
loss of generality we assume G′ = lim−→Gi where the Gi are coherent subsheaves
of G′. By a) for G′ and for j#F , we have for any Gi an isomorphism

HomQCohτ (X,A)(Gi, j#F)
∼=−→ HomCohτ (X,A)(Gi,G′). (50)

Let ϕi : Gi → j#F be the homomorphism that corresponds to the canonical
inclusion ii : Gi → G′. It is easy to see that the ϕi form an inductive system,
and hence there is an induced homomorphism ϕ : G′ → j#F . Let G′i be the
kernel of ϕi and i′i : G′i → G the corresponding monomorphism. Then it follows
from the isomorphism in (50) for G′i instead of Gi that i′i must be zero. This
shows that ϕ is a monomorphism.

Reversing the roles of G′ and j#F , one obtains conversely a monomorphism
ϕ′ : G′ ↪→ j#F . By considering coherent subobjects of G′ and j#F , it is not
hard to see, that the composites ϕ′ϕ and ϕϕ′ are the identity. This proves the
assertion.

Definition 11.4 A crystal G ∈ Crys(X,A) is called an extension of F if j∗G ∼=
F . It is called a maximal extension if in addition for all H ∈ Crys(X,A), the
canonical map

HomCrys(X,A)(H,G) −→ HomCrys(U,A)(j∗H,F)

is an isomorphism.

Note that in the category of crystals there always exists a unique minimal ex-
tension of F , namely j!F .

Proposition 11.5 Assume that G ∈ Cohτ (X,A) is a maximal extension of
F . Then the crystal represented by G is a maximal extension of the crystal
represented by F .

Proof: Given ϕ : j∗H // F , we need to construct an extension ϕ̃ : H // G
and show that it is unique in the category of crystals. So let ϕ be given. Then
for some n ∈ N, there exists a diagram of τ -sheaves

j∗H τn

⇐= j∗((σnX × id)∗H) ∼= (σnU × id)∗(j∗H)
ϕn−→ F

which represents ϕ. By the maximality of G as a τ -sheaf there exists a unique
map of τ -sheaves ϕ̃n : (σnX × id)∗H → G which extends ϕn. Hence the induced
diagram

H τn

⇐= (σnX × id)∗H ϕ̃n−→ G

defines an extension of ϕ.
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Because Hom(H,G) is a group under addition, for the uniqueness it suffices
to show that any extension ϕ̃ of ϕ = 0 is the zero morphism. Let ϕ̃ be such an
extension. Then for some m ∈ N there exists a diagram in Cohτ (X,A)

H τm

⇐= (σmX × id)∗H ϕ̃m−→ G

which represents ϕ̃. Furthermore, if we define for all n ≥ m the map ϕ̃n :=
ϕ̃m ◦ (σn−m × id)∗τn−m, then the diagram

H τn

⇐= (σnX × id)∗H ϕ̃n−→ G

also represents ϕ̃. Defining ϕn := j∗ϕ̃n : (σnU × id)∗j∗H → F , the diagram

j∗H τn

⇐= (σnU × id)∗j∗H ϕn−→ F

clearly represents ϕ. Thus for n � 0 the map ϕn must be zero. Because G is
maximal, the extension ϕ̃n is unique and hence it must be zero as well, and the
assertion follows.

Remark 11.6 We do not know whether any crystal posseses a maximal ex-
tension. For instance the example F = (F , 0) of Remark 11.2, considered as a
crystal, has zero as its maximal extension.

Next we give some examples of maximal extensions:

Proposition 11.7 Suppose X is normal, codimXZ ≥ 2 and F is locally free.
Then j∗F is coherent, so that j#F = j∗F is the maximal extension of F to X.

The coherence of j∗F is a well-known result. Alternatively, it follows from
Lemma 11.13 which we prove below.

For some further examples, we introduce the following notion from [13], §1.2:

Definition 11.8 A τ -sheaf G on X is said to have good reduction on Z if the
map

τi∗G : (σ × id)∗i∗G → i∗G

is injective.
A locally free extension G of F ∈ Cohτ (U,A) is called good if τF is injective

and G has good reduction on Z. (In particular, good extensions can only exist
if F is locally free.)

Proposition 11.9 If X is normal, then any good extension is maximal.

The proof will be given after the proof of Theorem 11.15. As a consequence, if
G is a τ -sheaf attached to a family of A-motives on X and U is a dense open
subset of X, then G is the maximal extension of the restriction j∗G. For later
use, we state the following immediate corollary.

Corollary 11.10 Suppose X is normal and Ū = X. Then j#1lU,A = 1lX,A. In
particular, if j∗F ⊃ 1lU,A, then with respect to this inclusion, one has

F ∩ j∗1lU,A ⊂ 1lX,A.

For the remainder of this subsection, we will give sufficient conditions for
the existence of maximal extensions of coherent τ -sheaves. The proofs of the
following two results are elementary and left to the reader.
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Lemma 11.11 Suppose j′ : V → X is an open immersion. Consider the pull-
back diagram

U
j // X

U ∩ V

j̃′

OO

j̃

// V .

j′

OO

Then (j′)∗j#F ∼= j̃#(j̃′)∗F . Thus if F has a maximal extension, then so does
(j̃′)∗F and it is given by (j′)∗j#F .

Proposition 11.12 Let {Ui} be an open cover of X. Suppose G is an extension
of F such that each G|Ui

is a maximal extension of F |Ui∩U . Then G is a maximal
extension of F .

The following lemma is useful to prove that j∗ preserves coherence in certain
important cases.

Lemma 11.13 Let W be a normal scheme. Let ji : Vi ↪→W be open subschemes
such that V := ∪Vi is dense in W . Let x1, . . . , xr be those generic points of
W r V which are of codimension 1. Let F be a quasi-coherent torsion free
sheaf on W such that all the sheaves F|Vi

and all the sheaves F ⊗OW
OW,xj

are
coherent. Then F is coherent.

Proof: As coherence is a local property, we may assume that W = SpecR is
affine, where R is some normal domain, and that W contains at most one of
the xi, which we denote by p ∈ SpecR. Refining the Vi, we may assume that
they are all of the form SpecRfi

for suitable elements fi of R. Let F denote
the fraction field of R, and M the torsion free module corresponding to F — to
be torsion free simply means that M →M ⊗R F := MF is a monomorphism.

Our assumptions imply that MF is a finite F vector space, say of dimension
n. We choose a basis e1, . . . , en of MF over F . Choose fi, fp ∈ R such that
fiel ∈ Mi := Mfi for all i and fpel ∈ Mp for all l. Let f := fp

∏
fi. Then

fRnfi
⊂ Mi for all i and fRnp ⊂ Mp. Because (Mi)F = MF = (Mp)F , one can

also find g ∈ R such that (f/g)Rnfi
⊃Mi and (f/g)Rnp ⊃Mp. But then

M ⊂Mp ∩
⋂
Mi ⊂ (f/g)(Rnp ∩

⋂
Rnfi

) ⊂ (f/g)
⋂
q

Rnq = (f/g)Rn

where
⋂

qRq is indexed by all primes q of height one and the right most equality
uses that for a normal domain R one has

⋂
qRq = R, cf. [45], Thm. 38.

Corollary 11.14 Let F ∈ Cohτ (U,A) be torsion free and assume that X is
normal. Let z1, . . . , zr denote those generic points of Z which are of height 1 in
X. For each l ∈ {1, . . . , r} consider the pullback diagram

U
j // X

SpecOX,zl
r {zl}

f ′l

OO

jl
// SpecOX,zl

.

fl

OO

Let F l denote the pullback of F to SpecOX,l r {zl}. If each of the F l has a
maximal extension to SpecOX,zl

, then F has a maximal extension to X.
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Proof: We have to show that j#F is coherent. Clearly j#F ⊂ j∗F is zero
outside Ū , and so we may assume that X = Ū . Denote by j#F the sheaf
underlying j#F . By Lemma 11.11 and a limit argument, we have that f∗l j#F ∼=
jl#F l. Since jl#F l is coherent, the sheaves f∗l j#F are coherent. For a normal
k-scheme X, the scheme X×SpecA is normal as well, because k → A is smooth,
cf. [45], Corollary 21.E. The previous lemma now yields that j#F is coherent,
and thus the proof is complete.

Building on results of Gardeyn, we can now prove the following:

Theorem 11.15 Suppose X is a normal scheme and F a torsion free τ -sheaf
on U such that the morphism (σU × id)∗F τF−→ F is injective. Then j#F is
coherent, i.e., F has a maximal extension to X. Furthermore, if X is a curve
and F is locally free, then j#F is locally free of the same rank.

For the convenience of the reader, and because we make repeatedly use of them,
we recall some results from [34] and [13]. The following lemma is a simple
adaption of [34], Prop. 6.

Lemma 11.16 Let R be a noetherian integral domain and π an element of R
such that the ideal p = πR is a smooth height one prime ideal of R, i.e., such
that the localization Rp is a discrete valuation ring. Let F be the fraction field
of R and Rπ := R[1/π]. Then there exists a bijection between

(i) finitely generated torsion free R-modules M such that M/πM is torsion
free as well and

(ii) diagrams
Mπ

α

��
Mp

β // MF ,

where Mπ, MF and Mp are finitely generated modules over Rπ, F and
Rp, respectively,

MF
∼= Mπ ⊗Rπ

F ∼= Mp ⊗Rp F

and the maps α and β are the maps that arise from the above isomorphisms
by composition with the canonical morphisms Mπ →Mπ⊗RπF and Mp →
Mp ⊗Rp F , respectively.

The bijection is the obvious one, given by mapping M to the diagram

M ⊗R Rπ
α

��
M ⊗R Rp

β // M ⊗R F .

The inverse is obtained by mapping a diagram to Im(α) ∩ Imβ ⊂ MF , which
turns out to be a finitely generated torsion free R-module which remains torsion
free after tensoring with R/(π) over R.

Based on this, the following is shown in [13], Prop. 1.13 ii):

Proposition 11.17 Suppose j : U = Spec K → X = Spec V is corresponds to
the generalization map V → K of the discrete valuation ring V. Suppose τ is
injective. Then j#F is coherent. Furthermore, if F is locally free, then j#F is
locally free of the same rank.
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For the proof, one applies the above lemma to R := V⊗A and π a uniformizer
of V. One is given F on SpecRπ and hence on SpecF , F = Frac(R), and one
needs to perform a calculation on the discrete valuation ring Rp ⊂ F . Now
any finitely generated F vector MF spaces arises from an Rp-module Mp by
base change. Furthermore a morphism (σ × id)∗MF → MF clearly arises from
a morphism

(πnq)(σ × id)∗Mp
∼= (σ × id)∗(πnMp)→ (πnMp)

for n sufficiently large. Thus by the lemma one can find an extension. The
union of any two extensions is again an extension. By an inductive argument,
one can find an extension M for which the cokernel of τ has minimal length
over Rp. This extension will be the maximal one.

Proof of Theorem 11.15: Let z1, . . . , zr denote the codimension one points in
Z. Let F l, jl be defined as in the previous corollary. By the above corollary, it
suffices to show that for each l the τ -sheaf jl#F l is coherent. This follows from
the previous proposition.

Proof of Proposition 11.9: As in the previous proof it suffices to prove the
proposition in the case where X = SpecR, where R is a discrete valuation
ring with fraction field F , and where U = SpecF . This is treated in [13],
Prop. 1.13 i).

Assume that U is dense in X and that j#F is coherent. We then have the
short exact sequence

0 −→ j!F −→ j#F −→ i∗i
∗j#F −→ 0 (51)

in Crys(X,A). The sheaf i∗j#F is computable in Cohτ (X,A) and the following
proposition is a useful tool for its computation.

Proposition 11.18 Suppose X is regular and F is torsion free. Define f :
X̂Z → X to be the completion of the scheme X along Z and consider the pair
of pullback diagrams

U
j // X Z

ioo

X̂Z r Z

f ′

OO

ĵ

// X̂Z

f

OO

Z.
î

oo

Define F̂ := f ′
∗F . Then f∗j#F ∼= ĵ#F̂ and in particular i∗j#F ∼= î∗ĵ#F̂ .

Proof: By the above proposition, we may assume that X = SpecR is affine
and Z is irreducible, so that Z is the closure of a single prime p ∈ SpecR. If
codimXZ ≥ 2, then j# = j∗ and similarly ĵ# = ĵ∗, and so the assertion follows
from well-known results in ring theory. Therefore we assume that p has height
1. Denote by R̂ the completion of R at p ⊂ R.

Clearly one has f∗j#F ⊂ ĵ#F̂ . To prove the opposite inclusion, let Ĝ be
a coherent τ -subsheaf of ĵ#F̂ which contains f∗j#F . Using the normality of
X̂Z ⊗ A as in the proof of Lemma 11.13, one can find an element 0 6= g ∈ p

such that gĜ ⊂ f∗j#F . (This is a based on a simple argument where one
compares finitely generated modules for the discrete valuation rings (R⊗A)p⊗A
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and (R̂ ⊗ A)p⊗A, which are the obvious localizations of the rings R ⊗ A and
R̂ ⊗ A.) This implies that f∗Ĝ ∩ j∗F ⊂ (1/g)j#F is coherent. Hence we have
f∗Ĝ ∩ j∗F ⊂ j#F , and thus also f∗ĵ#F̂ ∩ j∗F ⊂ j#F .

It easily follows that the localization of (j#F)⊗R R̂ at p agrees with that of
ĵ#F̂ at p, because (R̂⊗A)p⊗A is a discrete valuation ring. Since all other height
one primes q of Spec R̂ ⊗ A are in f ′

−1(U × SpecA), it follows that f∗(j#F)
agrees with ĵ#F̂ at any height one prime of X̂Z × SpecA. Both sheaves are
torsion free and by normality of R̂⊗A, they must agree.

11.2 The maximal extension of FK
Recall that jK : MK →MK denotes the inclusion of the moduli scheme MK into
the compactification MK constructed by Drinfeld. The τ -sheaves F (n)

K satisfy
the hypothesis of Theorem 11.15. Therefore jK#F (n)

K is a coherent τ -sheaf on
MK.

Let iK : M∞K ↪→ MK denote the closed immersion of the cusps into MK,
which was constructed in Section 2. The central result on jK#F (n)

K is the fol-
lowing theorem whose proof will occupy the remainder of this subsection.

Theorem 11.19 For each connected component c of M∞K , there exists a unique
A-module Pc of rank one such that there is a nil-isomorphism⊕

c

1lc,A ⊗A Pc −→ i∗KjK#FK, (52)

where the summation is over all components c. If one defines

F (n),∞
K :=

⊕
c

1lc,A ⊗A P⊗nc ,

where the summation is again over all components c of M∞K , then for all n ∈ N0

there is a nil-isomorphism

F (n),∞
K −→ i∗KjK#F (n)

K

induced from (52) by taking symmetric powers. In particular, in Crys(MK, A)
one has the induced short exact sequence

0 −→ jK!F (n)
K −→ jK#F (n)

K −→ iK∗

(⊕
c

1lc,A ⊗A P⊗nc
)
−→ 0. (53)

Let us observe that for the proof of the theorem, we may apply Proposi-
tion 11.18. Thus it suffices to consider the local situation i′K : M∞K ↪→ M̂K. In
the discussion leading to Proposition 2.14, we obtained an explicit description
for the spaces involved, and an analytic description of the universal Drinfeld
module on the generic fiber M̃K of M̂K. The corresponding open immersion is
denoted by j′K.

We first consider this situation in the case K = K(n), where n is a fixed
proper non-zero principal ideal of A. The general situation is discussed toward
the end of this subsection. By Lemma 2.11, the scheme M̂K of infinitesimal
neighborhoods of the cusps is a disjoint union of the corresponding schemes at
the individual cusps. Therefore it suffices to consider the following situation
described in Subsection 2.2:

We denote by Rn the coordinate ring of the affine scheme M1
n and by Qn

its fraction field. Rn is a regular ring of dimension one and of finite type
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over k. If π denotes an indeterminate, then we had obtained identifications
M∞n

∼= SpecRn, M̂n
∼= SpecRn[[π]] and M̃n

∼= SpecRn((π)) in such a way that
i′K, when restricted to an individual cusp, corresponds to the canonical map
Rn[[π]] −→→ Rn and j′K to inverting π in Rn[[π]]. Let vn denote the valuation
on Qn((π)) with vn(π) = 1. For p ∈ MaxRn, define kp as Rn/p and vp as the
valuation on kp((π)) such that vp(π) = 1.

Our main tool to establish the above theorem is to pass from algebraic τ -
sheaves F to A-analytic τ -sheaves FA-an. If X = Spec V where V is a discrete
valuation ring, this procedure was considered in [13], Ch. 1. Because the base
X is not rigid analytic, we chose the term A-analytic instead of DA-rigid. Our
aim is to make a clear distinction between the analytic considerations in this
subsection and in Section 8.

One can define in both, algebraic and A-analytic contexts a notion of max-
imal extension and the respective reductions to the special fibers agree. The
advantage of the analytic set-up is that the maximal extension of FA-an does
contain a subsheaf ‘of good reduction’, i.e., the ‘good part’ of the special fiber
is visible over the generic fiber. In the situation at hand, this subsheaf will be
the unit τ -sheaf 1lA-an

M∞
K ,A

.

From now on, we fix a finite flat map k[T ] → A and a k[T ] basis a1, . . . , ad
of A. We define (Rn[[π]]⊗A)A-an ⊂ (Rn[[π]]⊗A)⊗̂k[T ]k[[T ]] as

{ ∞∑
n=0

d∑
i=1

rn,i ⊗ aiTn : rn,i ∈ Rn[[π]],
1
n

vn(rn,i)→∞ for n→∞
}
.

This is clearly a ring under the obvious operations. It is independent of the
chosen map k[T ] → A. Its reduction modulo π is isomorphic to Rn ⊗ A. Fur-
thermore it is a subring of the ring (Rn⊗A)[[π]] in an obvious way. One defines
the ring (Rn((π))⊗A)A-an := (Rn[[π]]⊗A)A-an[1/π]. Similar rings are also de-
fined for Qn and kp, p ∈ MaxRn, instead of Rn. All these rings are noetherian.

The following diagram exhibits the natural maps arising from specialization
and generalization of schemes:

(Qn((π))⊗A)A-an (Rn((π))⊗A)A-an? _oo // // (kp((π))⊗A)A-an

(Qn[[π]]⊗A)A-an

����

� ?

OO

(Rn[[π]]⊗A)A-an? _oo // //

����

� ?

OO

(kp[[π]]⊗A)A-an

����

� ?

OO

Qn ⊗A Rn ⊗A? _oo // // kp ⊗A.

In the remainder of this subsection R will always denote one of the rings
{Qn,Rn, kp : p ∈ MaxRn} andR one of the rings R[[π]], R((π)). The map σ×id
on R ⊗ A has an obvious extension to (R ⊗ A)A-an which we again denote by
σ×id. For a finitely generated τ -module (M, τ) onR⊗A, one defines (M, τ)A-an

as (M, τ)⊗R⊗A (R⊗A)A-an. The generalization map SpecR((π))→ SpecR[[π]]
is denoted jR and the specialization map SpecR→ SpecR[[π]] by iR.

An A-analytic τ -sheaf F̃ = (F̃ , τ) on SpecR consists of a coherent sheaf F̃
on Spec(R⊗A)A-an together with a morphism (σ×id)∗F̃ τ−→ F̃ . One defines the
notion of extension and maximal extension for the morphism jR. If a maximal
extension of F̃ on SpecR((π)) to SpecR[[π]] exists, it is denoted F̃max.

A locally free analytic τ -sheaf F̃ on SpecR[[π]] with injective τ is said to
have good reduction if the map τ on the locally free τ -sheaf i∗RF̃ on SpecR over
A is injective. Note that if R is a field, then any locally free τ -sheaf F on
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SpecR⊗A contains a locally free τ -subsheaf G such that G → F is an injective
nil-isomorphism and τG is a monomorphism.

The following result is due to Gardeyn, [13], Ch. 1. Parts a) and c) are
based on an A-analytic analogue of Lemma 11.16 and on a comparison of the
two versions of this lemma.

Proposition 11.20 Let F̃ be an A-analytic torsion free τ -sheaf on SpecR((π)).
a) Assume that τF̃ is a monomorphism and that F̃ has an extension G̃ to

SpecR[[π]]. Then F̃ has a torsion free maximal extension, denoted F̃max. Its
reduction i∗R(F̃max) is torsion free as well. If R is a field and G̃ is locally free,
then F̃max is locally free.

b) Suppose R is a finite field and G̃ is a maximal locally free extension of
F̃ . Then there exist

(i) a finite set of points S of SpecR⊗A,

(ii) a locally free analytic τ -subsheaf G̃′ of G̃ on the formal scheme X :=
Spm(R[[π]]⊗A)A-an r S

such that G̃′ has good reduction and the induced map i∗RG̃′ ↪→ i∗RG̃ is an injective
nil-isomorphism on Spec(R⊗A) r S.

c) Suppose that F̃ = FA-an for some torsion free, coherent τ -sheaf on
SpecR((π)) such that τF is a monomorphism. Then jR#F is coherent, F̃max

exists, and there is a canonical isomorphism (jR#F)A-an → F̃max. In particular
one has i∗R(jR#F) ∼= i∗R(F̃max) on R⊗A.

Note that unlike in the algebraic situation, part a) needs the existence of an
extension of F̃ to R[[π]].

Proof: In the case where R is a field, the results as stated are from [13],
Prop. 1.15 ii), iii), Thm. 1.21. The case where R = Rn can be obtained along
the same lines as the results quoted, and we leave it to the reader to fill in the
details. An important step in the proof is to generalize [13], Lem. 1.3, to the
case where the base has dimension 2. This step is based on Lemma 11.16.

In analogy to Corollary 11.10, one has the following result. The proof is
similar, again based on [13], Ch. 1, and thus omitted.

Proposition 11.21 Suppose R = Rn[[π]] and S ∈ {Rn((π)),Qn[[π]],Qn((π))}.
Then 1lA-an

SpecR,A is the maximal extension of 1lA-an
SpecS,A to SpecR. In particular if

F̃ is an A-analytic τ -sheaf on SpecR such that 1lA-an
SpecS,A is contained in F̃⊗RS,

then
1lA-an

SpecS,A ∩ F̃ ⊂ 1lA-an
SpecR,A ⊂ F̃ ⊗R S.

We now come to the basic construction needed for the proof of Theorem 11.19.
For this recall that in Section 2, we had defined a universal rank 1 Drinfeld-
module ϕ1

n on Rn. Its pullback along the zero section of Rn[[π]]→ Rn defines a
rank 1 Drinfeld module, which we denote by ϕ, and the pullback of ϕ to Rn((π))
is again denoted ϕ. On Rn((π)), we also had defined a rank 2 Drinfeld-module
ϕ′ with semi-stable reduction of rank 1, cf. Proposition 2.9. Furthermore, in
loc. cit. we had defined an exponential map

eλ : Rn((π))→ Rn((π)) : x 7→
∞∑
n=0

cnx
qn

with cn ∈ πenRn where the en are positive integers with logq en →∞.
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Define M2 := (M2, τ2) as the τ -module on Rn((π)) corresponding to ϕ′.
I.e. M2 = R((π)){τ} where Rn((π)) acts via left multiplication and a ∈ A acts
via composition with ϕ′a on the right. Furthermore, define M1 := (M1, τ1) as
the τ -module on Rn((π)) corresponding to ϕ. The modules M2 and M1 are
projective over Rn((π)) ⊗ A of ranks 2 and 1, respectively. The module M2

is free over Rn((π)) ⊗ k[T ] with basis m1 = 1,m2 = τ, . . . ,m2d = τ2d−1 and
similarly M1 is free with basis m′1 = 1,m′2 = τ, . . . ,m′d = τd−1. With respect to
the latter basis, the map τ on M1 is given as τ = α(σ× id) for some d×d-matrix

α =


0 0 . . . 0 −r0/rd
1 0 . . . 0 −r1/rd
0 1 . . . 0 −r2/rd
. . . . . . . . . . . . . . .
0 0 . . . 1 −rd−1/rd

+ T


0 . . . 0 1/rd
0 . . . 0 0
0 . . . 0 0
. . . . . . . . . . . .
0 . . . 0 0


where the ri ∈ Rn and rd ∈ R∗n, because ϕ arises via base change from ϕ1

n.

Lemma 11.22 There is a well-defined map of A-analytic τ -sheaves

µ :MA-an
2 →MA-an

1

defined by mapping the basis element ml, 1 ≤ l ≤ 2d to

∑
n≥0

c(q
l−1)

n αα(q) . . . α(qn+l−2)

(
1
0
...
0

)

with respect to the basis m′1, . . . ,m
′
d.

Proof: Having the above explicit description of α and the condition logq en →
∞, it follows easily that the sums defining the images of the mi are column
vectors of length d defined over (Rn[[π]] ⊗ k[T ])k[T ]-an. Thus µ is well-defined.
It clearly gives rise to a map of A-analytic τ -sheaves on R((π)).

We define M̃2 :=MA-an
2 , M̃1 :=MA-an

1 and H̃ := kerµ.

Lemma 11.23 The map µ is surjective and H̃ a locally free A-analytic τ -sheaf
on which τ is an isomorphism.

Proof: For each p ∈ MaxRn there is a specialization map µp for the fiber
at p. By [13], Thm. 6.22, the resulting map µp is surjective and its kernel is
isomorphic to 1lA-an

kp((π)),A. Since this holds for all p, the map µ is surjective, H̃ is
locally free of rank one over Spec(R((π))⊗A)A-an and τH̃ is surjective. As any
surjective map of locally free sheaves of the same rank is an isomorphism, so is
τH̃, and thus we have proved all assertions of the lemma.

Lemma 11.24 The sheaf H̃ is free over Spec(Rn((π))⊗ k[T ])k[T ]-an of rank d.

Proof: As in the proof of [13], Thm. 6.22, one can construct a sequence of
k[T ]-analytic τ -sheaves G̃i on R((π)) with surjective morphism µi : G̃i−1 → G̃i,
i = 1, . . . , d such that G̃0

∼= M̃2 and G̃d ∼= M̃1 and such that the G̃i correspond
to Drinfeld-k[T ]-modules of rank 2d−i on R((π)). (The minimal basis needed in
loc. cit. can be obtained overQn((π)); the construction still works overRn((π)).)
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As the G̃i are attached to Drinfeld-modules, the underlying sheaves are free
modules over (Rn((π))⊗ k[T ])k[T ]−an of rank 2d− i. Let H̃i denote the kernel
of µi. Taking the determinant in the short exact sequence

0 −→ H̃i −→ G̃i−1
µi−→ G̃i −→ 0

yields that H̃i is free over (Rn((π)) ⊗ k[T ])k[T ]−an of rank one. Thus H̃ has a
d-step filtration all of whose subquotients are free of rank one. It follows that
H̃ itself is free of rank d.

Proposition 11.25 The sheaf H̃ is isomorphic to (1lSpecR((π)),A)A-an ⊗A P
where P is a projective rank one module over A.

Proof: We claim that over Spec(R((π)))[T ])k[T ]-an the sheaf H̃ is isomorphic
to ((1lSpecR((π)),Fq [T ])

k[T ]-an)d. Assuming the claim for the moment, it follows
that the set of τ -invariants P := H̃τ is a free k[T ]-module of rank d. But it also
is a module over A, and hence it must be a projective rank one A-module. It
follows that P ⊗A (1lR((π)),A)A-an → H̃ is well-defined. Furthermore as a map of
k[T ]-analytic τ -sheaves it is an isomorphism and hence the proposition follows.

To prove the claim, let the modules H̃i be defined as in the previous proof.
We will first show that each H̃i is isomorphic to (1lRn((π)),k[T ])

k[T ]-an. By [13],
Thm. 6.22, we know that after base change to Spec(Qn((π))[T ])k[T ]−an the sheaf
H̃i becomes isomorphic to (1lQn((π)),k[T ])

A-an. By Proposition 11.21, it follows
that H̃i must be a k[T ]-analytic τ subsheaf of (1lRn((π)),k[T ])

A-an.
Because H̃i is free, there exists f ∈ (Rn((π))[T ])k[T ]-an such that Hi =

f(1lRn((π)),k[T ])
k[T ]-an. Because τ is surjective, f must satisfy the equation f =

uf (q) for some unit u ∈ (Rn((π))[T ])k[T ]-an. To analyze this equation we pass
to the ring (Rn[T ])((π)) which sits in the pullback diagram of rings

(Rn((π))[T ])k[T ]-an ��

_�
(Rn[T ])((π))

_�

(Qn((π))[T ])k[T ]-an �� (Qn[T ])((π)).

(54)

An explicit calculation shows that over (Rn[T ])((π)) we may write f =
u1π

n1y for some unit u1 of (Rn[T ])[[π]], some n1 ∈ Z and some 0 6= y ∈
k[T ]. Because H̃i becomes isomorphic to (1lQn((π)),k[T ])

k[T ]-an over the ring
(Qn((π))[T ])k[T ]-an one concludes that f−1 lies in (Qn((π))[T ])k[T ]-an which im-
plies y ∈ k∗. But then f−1 is an element of (Rn[T ])((π)) as well and the above
pullback shows that f is a unit in (Rn((π))[T ])k[T ]-an. Hence H̃i is isomorphic
to (1lRn((π)),k[T ])

k[T ]-an, as asserted.

By the above we know that H̃ can be written with respect to a suitable basis
as

H̃ = (((Rn((π))[T ])A-an)d, α(σ × id)), α =


1 x12 x13 . . . x1d

0 1 x23 . . . x2d

...
...

...
. . .

...
0 0 0 . . . 1


for certain xij ∈ (Rn((π))[T ])A-an.

Let us consider the special case d = 2. The general case will follow by
a straightforward induction procedure and its proof is left to the reader. We
claim that the set of τ -invariants over (Rn[T ])((π)) is the same as that over
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(Qn((π))[T ])k[T ]-an. If this is shown, the set of τ -invariants of H̃ is free over
k[T ] of rank 2. Correspondingly one has a monomorphism

((1lRn((π)),k[T ])
k[T ]-an)2 ↪→ H̃,

and Proposition 11.21 shows that it must be an isomorphism.
To compute the τ -invariants, we consider again the pullback diagram (54).

The equations for a τ -invariant vector (a, b) ∈ (Qn[T ])((π))2 are

a = a(q) + x12b
(q), b = b(q)

with x12 ∈ (Rn((π))[T ])A-an. This means that b ∈ k[T ] and that a satisfies an
equation

a(q) − a = x

for some x ∈ (Rn((π))[T ])A-an. We consider the last equation over the ring
(Rn[T ])((π)). Thus writing a =

∑
n�−∞ αnπ

n and x =
∑
n�−∞ ξnπ

n with
αn ∈ Qn[T ] and ξn ∈ Rn[T ] we have∑

n

α(q)
n πqn −

∑
n

αnπ
n =

∑
n

ξnπ
n.

Comparing coefficients of the πn, one may break up the equation into an
equation for all n > 0, an equation for n = 0 and an equation for the finitely
many terms with n < 0, say n0 is the smallest index of a non-zero αn. Looking
at the terms with n > 0, it easily follows that for n > 0 all αn are in Rn[T ]. For
n = 0 one has the equation

α
(q)
0 − α0 = ξ0

in Qn[T ]. This leads to Artin-Schreier equations for all the coefficients of α0

with respect to T where the coefficients of ξ0 are in Rn. So the coefficients of
α0 are integral over Rn and lie in Qn. Because Rn is regular, hence normal, the
coefficients must lie in Rn, and hence α0 ∈ Rn[T ].

Finally, for n < 0 one first considers the equation for αn0 . It reads α(q)
n0 =

ξqn0 . As in the case n = 0, one uses the normality of Rn and comparison of
coefficients with respect to T to obtain αn0 ∈ Rn. Upwards induction starting
with n0 now easily shows that all αn must lie in Rn. The pullback property of
diagram (54) shows that (a, b) ∈ (Rn((π))[T ])k[T ]-an. This finishes the proof for
d = 2.

We have thus obtained the short exact sequence

0 −→ H̃ ∼= 1lA-an
Rn((π)),A ⊗A P −→ M̃2 −→ M̃1 −→ 0. (55)

on Spec(R((π))⊗A)A-an for the A-analytic τ -sheaf M̃2 attached to the universal
algebraic τ -sheaf Fn pulled back to the generic point SpecRn((π)) of the formal
neighborhood of the cusps.

We fix n > 0 and introduce the following sheaves related to F (n−1)
n :=

Symn−1 Fn: Let G̃i, i = 0, . . . , n be the canonical filtration of G̃n := Symn−1 M̃2.
Then for i = 1, . . . , n the successive subquotients G̃i/G̃i−1 are isomorphic to
H̃⊗(i−1) ⊗ (M̃1)⊗(n−i). For p ∈ Max(Rn) let k̃p := Rn/p and let Ip denote the
inertia subgroup of Gal(k̃p((π))sep/k̃p((π))). For an A-analytic τ -sheaf F̃ on
SpecRn, Rn((π)) or Rn[[π]], we denote by F̃ p̄ its reduction under Rn → Rn/p.

Using the results in [13], for each p ∈ SpecRn, the sheaves (G̃i,p̄)max are
well understood. They key assertion for the proof of Theorem 11.19 is that the
natural morphism (G̃max

i )p̄ → (G̃i,p̄)max is a nil-isomorphism, cf. Lemma 11.28.
We will prove this by induction on i. The proof uses that the subquotients
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G̃i/G̃i−1 arise from a τ -sheaf on Rn, with everywhere good reduction, by base
change to Rn((π)).

Using that G̃n arises from the algebraic τ -sheaf Symn−1M2, one can easily
prove the following by some inductive arguments (for the last assertion one uses
that the action of Ip on Tal(M̃2,p̄) is unipotent and not potentially trivial):

Lemma 11.26 For each i, the quotient G̃i/G̃i−1 is the A-analytic τ -sheaf at-
tached to an algebraic τ -sheaf on SpecRn((π)), which in turn arises by pullback
from an algebraic τ -sheaf with everywhere good reduction defined on the scheme
SpecRn. In particular, it admits a maximal extension to SpecRn[[π]]. Further-
more it is locally free.

The sheaves G̃i admit a maximal extension to SpecRn[[π]] as well.
For all l ∈ SpecA, p ∈ Max(Rn) and i ∈ {1, . . . , n} the invariants under Ip

of the Tate-modules Tal(G̃i,p̄) are one-dimensional.

We now set up the notation for a more involved induction. Suppose we are
given a short exact sequence of locally free A-analytic τ -sheaves on SpecRn((π))

0 −→ M̃′ −→ M̃ −→ M̃′′ −→ 0 (56)

such that

(a) M̃′′ is the A-analytic τ -sheaf attached to an algebraic τ -sheaf M′′ which
is obtained from a locally free algebraic τ -sheaf M′′0 on SpecRn with ev-
erywhere good reduction by pullback to SpecRn((π)) along the canonical
map R → R((π)).

(b) M̃ has a maximal extension (to SpecRn[[π]]).

(c) G̃1 is contained in M̃′.

(d) For all l ∈ SpecA and p ∈ Max(SpecRn), the invariants under Ip of the
Tate-modules Tal(M̃p̄) are one-dimensional.

Using (a) and (b) yields the diagram

M̃′′max

0 // M̃′max // M̃max // C̃ //

OO

0,

(57)

where C̃ is defined as the cokernel of the map M̃′max → M̃max. Because of
the maximality of M̃′max

, the right vertical map is an injection. Regarded
as modules over (Rn[[π]] ⊗ A)A-an, there are canonical monomorphisms from
the objects of diagram (57) to those of diagram (56). We reduce the resulting
diagram at p and insert a middle row corresponding to the maximal extension
(M̃p̄)max to obtain the following diagram

0 // M̃′p̄ // M̃p̄
// M̃′′p̄ // 0

(M̃′′p̄)max

OO

0 // (M̃′p̄)max //

OO

(M̃p̄)max //

OO

C̃′p̄ //

OO

0

(M̃′max
)p̄

OO

// (M̃max)p̄
//

OO

C̃p̄
//

OO

0,

(58)
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where in the middle row C̃′p̄ is defined as the cokernel.

Lemma 11.27 The natural morphism (M̃′′max
)p̄ → (M̃′′p̄)max is an isomor-

phism.

Proof: The A-analytic τ -sheaf M̃′′ is obtained from M′′0 via pullback along
R → R((π)) and A-analytification. Let f : SpecR[[π]] → SpecR be the struc-
ture morphism and fp̄ its reduction modulo p. Because M′′0 has everywhere
good reduction and is locally free, it follows that (M̃′′)max ∼= (f∗M′′0)A-an and
(M̃′′p̄)max ∼= (f∗p̄M′′0,p̄)A-an. Because A-analytification commutes with special-
ization at p, the assertion follows.

We make the following assumption on Diagram (58):

(e) The map (M̃′max
)p̄ → (M̃′p̄)max is a nil-isomorphism for all p.

Lemma 11.28 Under the above assumptions, the following hold:

(i) The map (M̃max)p̄ → (M̃p̄)max is a nil-isomorphism for all p.

(ii) C̃ ⊂ π(M̃′′)max, so that τ = 0 on C̃/(π).

We first prove the following

Sublemma 11.29 Let I be any ideal of Rn[[π]] and Ñ ′ ↪−→ Ñ a monomor-
phism of A-analytic τ -sheaves on (Rn[[π]] ⊗ A)A-an. Then the kernel of the
induced map Ñ ′/IÑ ′ ↪−→ Ñ/IÑ is nilpotent.

Proof: The proof is based on the Artin-Rees lemma and follows the argument
given in [4], Prop. 3.1.8: The kernel in question is given (IÑ ∩Ñ ′)/IÑ ′. Because
τ is (σ × id)-linear, it follows that

τn(IÑ ∩ Ñ ′) ⊂ Iq
n

Ñ ∩ Ñ ′
Artin−Rees
⊂ Iq

n−l(I lÑ ∩ Ñ ′) ⊂ IÑ ′

for some fixed l > 0 and n� 0.

We now prove the lemma:

Proof: By the maximality of (M̃′p̄)max it easily follows that C̃′p̄ is torsion free
and hence contained in (M̃′′p̄)max. For the same reason we have

π(M̃′p̄)max = (M̃′p̄)max ∩ π(M̃p̄)max,

so that (M̃′p̄)max/(π) −→ (M̃p̄)max/(π) is injective.
I) Our first claim is that C̃′p̄ is contained in π(M̃′′p̄)max: Assume otherwise.

The reduction modulo π of the middle row yields the short exact sequence

0 −→ (M̃′p̄)max/(π) −→ (M̃p̄)max/(π) −→ C̃′p̄/(π) −→ 0

on k̃p ⊗ A. By our assumption, the map C̃′p̄/(π) → (M̃′′p̄)max/(π), which we
call α, has non-trivial image. Because (M̃′′p̄)max/(π) is locally free and the
corresponding τ is injective, τ is injective on the sheaf Imα and Imα is a non-
trivial locally free sheaf over the Dedekind domain k̃p ⊗ A. We also know that
G̃1,p̄ ⊂ (M̃′p̄)max/(π), and it follows that (M̃p̄)max/(π) contains a locally free
subsheaf of rank at least two on which τ is injective.
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Let F be the maximal locally free τ -subsheaf of (M̃p̄)max/(π) on which τ
is injective. Let S ⊂ SpecA be the finite set such that for l ∈ SpecA r S the
morphism τ is injective on the fiber of F above l. We apply Proposition 11.20 b).
Thus there exists a locally free analytic τ -subsheaf F̃ of (M̃p̄)max of rank at
least two on the formal scheme X := Spm(k̃p[[π]]⊗A)A-an rS, such that F̃ has
reduction F . In particular the Galois representation of Gal(k̃p((π))sep/k̃p((π)))
on the Tate-module Tal(F̃) ⊂ Tal(M̃p̄) is unramified for almost all l. For
such l the submodule of Tal(M̃p̄) of Ip-invariants has rank at least two, which
contradics hypothesis (d).

II) We next prove part (ii): By the above, the map βp̄ defined as C̃p̄ →
(M̃′′p̄)max takes its image in π(M̃′′p̄)max. It follows that the induced map

βp̄/(π) : C̃p̄/(π)→ (M̃′′p̄)max/(π)

is zero. As this holds for all p ∈ MaxRn, Lemma 11.27 shows that the natural
map

βπ : C̃/(π)→ M̃′′max
/(π)

is zero on all fibers p. The map βπ is a map of coherent algebraic τ -sheaves and
hence it has nilpotent image in the locally free τ -sheaf M̃′′max

/(π). However
on the latter the map τ is injective, and hence βπ itself must be zero, which
proves (ii).

III) We finally give the proof of part (i): Observe first that (Rn((π))⊗A)A-an

is equal to its subring (Rn[[π]]⊗A)A-an[1/π]. It follows that we may find m ∈ N
such that πm(M̃′′)max ⊂ C̃. Reducing mod p yields

πm(M̃′′p̄)max ⊂ Im(βp̄) ⊂ C̃′p̄ ⊂ π(M̃′′p̄)max,

where we use I) for the inclusion on the right. Thus the inclusion morphism
Im(βp̄) ⊂ C̃′p̄ is a nil-isomorphism. Furthermore by the sublemma, the sur-
jection C̃p̄ → Im(βp̄) is a nil-isomorphism as well. We observed already that
(M̃′max

)p̄ → (M̃max)p̄ has a nilpotent kernel. Considering the middle and bot-
tom sequences of diagram (58) together with the morphism between them and
using our hypothesis on the left vertical map, it follows that the middle vertical
map must be a nil-isomorphism. This is precisely assertion (i).

Proof of Theorem 11.19: The proof of the theorem for n = 0 is an immediate
consequence of Corollary 11.10. So from now one, we assume n > 0.

We first consider the case K = K(n) and n principal. We apply Lemma 11.28
inductively to the sequences

0 −→ G̃i−1 −→ G̃i −→ G̃i/G̃i−1 −→ 0.

Lemma 11.26 and induction verify that the hypothesis (a)–(e) of the lemma are
satisfied. It follows that for i = 1, . . . , n we have exact sequences

0 −→ G̃max
i−1 −→ G̃max

i −→ C̃i −→ 0,

where the C̃i have nilpotent reductions modulo π for i > 1. Proposition 11.25
yields a unique projective A-module P of rank one such that G̃max

1
∼= C̃1 ∼=

H̃⊗(n−1) has reduction 1lSpecRn,A ⊗A P
⊗(n−1). The sublemma now yields that

all the maps

1lSpecRn,A ⊗A P
⊗(n−1) ∼= G̃max

1 /(π) −→ G̃max
2 /(π) −→ . . . −→ G̃max

n /(π) (59)
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are nil-isomorphisms. In analogy with the notation M̃n, let F̃ (n−1)
n denote

the pullback of the sheaf F (n−1)
n to M̃n. By definition, the sheaf G̃n is the

restriction of (F̃ (n−1)
n )A-an to the infinitesimal neighborhood of a single cusp.

Thus by Proposition 11.20 c) the sequence (59) gives rise to a nil-isomorphisms⊕
c

1lc,A ⊗A P⊗(n−1)
c −→ (i′K)∗j′K#F̃

(n−1)
n ,

where the sum is over all components c of M∞K and Pc depends uniquely on c
(but not on n). By the remark following the statement of Theorem 11.19, the
proof of Theorem 11.19 is finished in the case K = K(n) and n principal.

Let now K be arbitrary admissible. Let n be a conductor of K such that
n is principal and V (n) is minimal. In particular, K(n) ⊂ K. Then there is
an associated Galois cover Mn → MK over SpecA(n) whose Galois group we

denote by G. In the notation of the previous paragraph, it follows that F̃ (n−1)
K

is the Galois descent under G of F̃ (n−1)
n . Passing to the attached A-analytic

τ -sheaves and considering maximal extensions, it follows easily that((
F̃ (n−1)
K

)max)A-an

⊂
(((
F̃ (n−1)

n

)max)A-an)G
.

Clearly 1lfMK,A
= 1lGfMn,A

. Also in any G-orbit of components c of M∞K , the
module Pc is independent of the cusp c. This yields a for ? ∈ {K,K(n)} a
monomorphism ⊕

c?

1lA-an
c?,A
⊗A Pc? −→

((
F̃ (n−1)

?

)max)A-an

,

where the sum is over the components c? of M∞? . Let C̃? denote its cokernel.
Then C̃K ⊂ C̃Gn ⊂ C̃n as finitely generated A-analytic τ -sheaves on M̃K. By

the result in the case K = K(n) there exists m ∈ N such that τmC̃n ⊂ πC̃n.
Thus by the Artin-Rees lemma, as in the proof of Sublemma 11.29, there exists
an m′ ∈ N such that τm

′ C̃K ⊂ πC̃K. This shows that τ is nilpotent on i′∗K(C̃K).
It follows as above that

F (n−1),∞
K −→ i′

∗
K

((
F̃ (n−1)
K

)max)A-an (Prop.11.18)∼= i′
∗
K

((
F̃ (n−1)
K

)max)
is a nil-isomorphism.

While in general it cannot be expected that the formation of maximal ex-
tension commutes with pullback, we have the following special result on it com-
muting with base change in the situation we are interested in.

Theorem 11.30 For ? ∈ {K,K∞} the τ -sheaf jK#(b∗?F
(n)
K ) is locally free of

rank n and the following natural inclusions are a nil-isomorphisms

b∗?(iK∗F
(n),∞
K ) −→ b∗?(jK#F (n)

K ) −→ jK#(b∗?F
(n)
K ).

Proof: The first assertion follows immediately from Theorem 11.15. Also the
map b∗?(iK∗F

(n),∞
K ) −→ b∗?(jK#F (n)

K ) is clearly a nil-isomorphism, since this
property is being preserved under pullbacks. Therefore it suffices to show that
the morphism b∗?(iK∗F

(n),∞
K ) −→ jK#(b∗?F

(n)
K ) is a nil-isomorphism. This as-

sertion may be shown on infinitesimal neighborhoods of cusps, and so it suffices
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to consider the base change b? : SpecRn[[π]] → Spec(? ⊗A Rn)[[π]]. Since the
cases ? = K and ? = K∞ have the same proof, for simplicity of notation, we
give it in the case ? = K.

Observe first that the pullback under bK of the sequence 55 yields the anal-
ogous sequence on Spec(K ⊗A Rn)[[π]]. Taking symmetric powers yields the
exact sequence:

0 −→ b∗KH̃⊗n ∼= 1lA-an
(K⊗Rn)((π)),A ⊗A P⊗n −→ Symn(b∗KM̃2) −→ b∗KCn −→ 0.

This shows that

(b∗KH̃)⊗n,max ∼= 1lA-an
(K⊗Rn)[[π]],A ⊗A P⊗n ↪−→ Symn(b∗KM̃2)max

is a monomorphism. Let C′n be the cokernel of the latter map. Using the
maximality of (b∗KH̃)max, one shows as before that C′n is torsion free and that
the right exact sequence

(b∗KH̃)⊗n,max/(π) −→ Symn(b∗KM̃2)max/(π) −→ C′n/(π) −→ 0

is also left exact.
Let us assume that C′n/(π) is not nilpotent. Because C′n → Cmax

n is injective
and τ is nilpotent on the special fiber of any sub τ -sheaf of π(Cmax

n ), it follows
that the image of C′n/(π) in the locally free sheaf Cmax

n /(π) is non-trivial. This
implies that Symn(b∗KM̃2)max/(π) contains a τ -subsheaf of rank at least two
on which τ is not injective.

Following the discussion after [13], Rem. 1.24, one can prove the following
extension of Propositon 11.20(b):

Lemma 11.31 Let F̃ be an A-analytic torsion free τ -sheaf on SpecR((π)).
Suppose G̃ is a maximal locally free extension of F̃ . Then there exist

(i) a finite set of points S of SpecR ⊗ A and a finite number of discs Di on
the rim of the rigid space DA,

(ii) a locally free analytic τ -subsheaf G̃′ of G̃ on the formal scheme X :=
Spm(R[[π]]⊗A)A-an r S r

⋃
iDi

such that G̃′ has good reduction and the induced map i∗RG̃′ ↪→ i∗RG̃ is an injective
nil-isomorphism on Spec(R⊗A) r S.

In particular, for infinitely many primes l of A, the prime R[[π]]] ⊗ l is
contained in X.

By the lemma, on a formal scheme X as above there exists a locally free
τ -subsheaf G̃′ of Symn(b∗KM̃2)max of rank at least two. We complete this at
any prime l of A that lies not in X. Via the duality between the l-adic Tate-
modules of τ -sheaves and forml l-adic τ -sheaves, this implies that the submodule
of inertia invariants of Tal(Symn(b∗KM̃2)) is of rank at least two. However this
Tate-module is the n-th symmetric power of the Tate-module of a Drinfeld-
module on K ⊗ Rn((π)) which has stable reduction of rank 1 modulo π. For
almost all l, the inertia invariants of these symmetric powers are of dimension
one over Al, which yields a contradiction.

11.3 Maximal extensions for formal and finite coefficients

In the previous subsections, we considered maximal extensions for τ -sheaves
over A. However for the comparison with the étale site, it is necessary to work
with finite and formal coefficients. Therefore in this subsection, we extend the
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results of Subsection 11.1 to such coefficients and discuss the transition from
crystals to étale sheaves for maximal extensions.

We fix a proper non-zero ideal n and a maximal ideal p of A. For any scheme
X over k we define X⊗̂Ap as the formal scheme obtained as the completion of
X×SpecA along the ideal sheaf OX⊗p, see [53]. Let σ×id denote the morphism
on X⊗̂Ap induced from the inverse limit system σX × idA/pn .

Definition 11.32 A formal τ -sheaf F̃ = (F̃ , τ) on X over Ap consists of a
coherent sheaf F̃ on the formal scheme X⊗̂Ap together with an OX⊗̂Ap-linear
morphism

τ : (σ × id)∗F̃ −→ F̃ .

The category of formal τ -sheaves on X over Ap is denoted by Cohf
τ (X,Ap).

We omit any definition of crystals in the formal context, as it will not be needed.
Let us fix a dense open immersion j : U → X and a closed complement i :
Z → X. Also, let F and F̃ be τ -sheaves in Cohτ (U,A/n) and Cohf

τ (U,Ap),
respectively.

Definition 11.33 Any G ∈ Cohτ (X,A/n) with j∗G ∼= F is called an extension
of F .

Define j#F ⊂ j∗F ∈ QCohτ (X,A/n) as the union of all extensions G of
F , or equivalently as the union of all coherent τ -subsheaves of j∗G.

If j#F is coherent, it is called the maximal extension of F with respect to j.
Analogously one defines j#F̃ and the notion of an extension and of a max-

imal extension for formal τ -sheaves.

If a maximal extension exists, it is unique up to unique isomorphism. For τ -
sheaves over A/n on U , there always exists an extension to X.

As in Subsection 11.1, one can show that the existence of a maximal exten-
sion is a local condition on X:

Proposition 11.34 Let {Ui} be an open cover of X. Suppose G is an extension
of F such that each G|Ui

is a maximal extension of F |Ui∩U . Then G is a maximal
extension of F .

The analogous assertion holds in the category of formal τ -sheaves over Ap.

Without proof, we state the following analogue of Corollary 11.14.

Proposition 11.35 Let F ∈ Cohτ (U,A/n) be locally free and assume that X
is normal. Let z1, . . . , zr denote those generic points of Z which are of height 1
in X. For each l ∈ {1, . . . , r} consider the pullback diagram

U
j // X

SpecOX,zl
r {zl}

f ′l

OO

jl
// SpecOX,zl

.

fl

OO

Let F l denote the pullback of F to SpecOX,zl
r {zl}. If each of the F l has a

maximal extension to SpecOX,zl
, then F has a maximal extension to X.

The analogous assertion holds in the category of formal τ -sheaves over Ap.

Note that in the proof for τ -sheaves over A/n one has to regard the underlying
sheaf as a coherent sheaf over the normal scheme X, since X × SpecA/n will in
general not be normal.
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Theorem 11.36 Suppose X is a normal scheme, F ∈ Cohτ (U,A/n) and the
morphism τF is injective. Then j#F is coherent, i.e., F has a maximal exten-
sion to X.

Proof: By the previous proposition, one may assume that X = Spec V for a
discrete valuation ring V and U → X is the map of schemes corresponding to the
generalization map V→ K where K is the fraction field of V. Suppose we have
M′ ⊂M ⊂ j#F . Because τ is injective on F , it is injective on j∗F and hence
on M′ and M. Let M′′ := M/M′ and consider the following commutative
diagram with exact rows

σ∗M′
_�

τ ′M
��

// σ∗M
_�

τM

��

// σ∗M′′

τ ′′M
��

// 0

0 //M′ //M //M′′ // 0.

Clearly M′′ is of finite length and so are the cokernels of τM and τM′ . Using
the Snake Lemma, one finds

lenCoker(τM′)− lenCoker(τM) = lenσ∗M′′ − lenM′′ = (q − 1) lenM′′ > 0.

It is easy to see that F has an extension, and that the union of any two extensions
is again an extension. Hence by the above inequality, any extensionM′ for which
lenCoker τM′ is minimal will be a (the) maximal extension of F .

Suppose F̃ ∈ Cohf
τ (U,Ap). We cannot prove any interesting results for

the natural transformation (j#F̃) ⊗A A/n → j#(F̃ ⊗A A/n). However as the
following result shows, passing to the formal site greatly improves the situation.

Theorem 11.37 Suppose X is a normal scheme and F̃ a locally free formal

τ -sheaf on U over Ap such that the morphism (σU × id)∗F̃
τF̃−→ F̃ is injective.

Then the following hold:

(i) j#F̃ is coherent.

(ii) If the cokernel of τF̃ is Ap-torsion free, then

j#F̃ ∼= lim←− j#(F̃ ⊗A A/(pn)).

(iii) If F̃ = F ′⊗̂AAp for some τ -sheaf F ′ ∈ Cohτ (U,A) such that τF ′ is
injective and Coker τF ′ is A-torsion free, then (j#F ′)⊗̂AAp ↪→ j#F̃ is a
monomorphism and a nil-isomorphism in codimensions zero and one (on
the scheme X).

(iv) Suppose in the situation of part (iii) that Z is normal and that there is a
τ -subsheaf G′ of i∗j#F ′ which has good reduction at all points of Z and
such that G ↪→ i∗j#F ′ is a nil-isomorphism. Then the monomorphism
(j#F ′)⊗̂AAp ↪→ j#F̃ is a nil-isomorphism.

Proof: (i): For the coherence of j#F̃ , it suffices by Proposition 11.35, to con-
sider the case where U = Spec V such that V is a discrete valuation ring. In this
situation, coherence is proved in exactly the same way as in Proposition 11.17,
where this time one applies Lemma 11.16 with R = V⊗̂Ap.

(ii): Let us now assume that Coker τF̃ is Ap-torsion free. This assumption
implies that τ is injective on F̃ ⊗AA/pn for any n. Thus by Theorem 11.36, the
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τ -sheaf j#(F̃ ⊗A A/pn) is coherent. In an obvious way, the j#(F̃ ⊗A A/(pn))
form an inverse system of τ -sheaves. Moreover there is an inclusion

j#F̃ ⊗Ap A/p
n ↪→ j#(F̃ ⊗A A/(pn))

whose image lies in the image of j#(F̃ ⊗AA/(pn
′
))⊗A /pn → j#(F̃ ⊗AA/(pn))

for all n′ ≥ n. The τ -sheaves j#(F̃ ⊗ A/pn) are determined by their stalks
at the points of Z of codimension one in X. By considering these points, the
above observations imply that the inverse system (j#(F̃ ⊗A A/(pn)))n satisfies
the Mittag-Leffler condition. Therefore in

j#F̃ −→ lim←− j#(F̃ ⊗A A/(pn)) −→ j∗F̃ ,

both maps to the right hand τ -sheaf are injective. As j#(F̃⊗AA/(p)) is coherent,
so is the inverse limit in the middle, and the definition of j#F̃ shows that the
left hand morphism is an isomorphism.

(iv): For this we assume part (iii) to be proved. By our assumptions and
Lemma 11.16, we have the following monomorphisms of torsion free τ -sheaves:

G′⊗̂AAp ↪−→ (i∗j#F ′)⊗̂AAp ↪−→ i∗j#F̃ . (60)

The left hand morphism is a nil-isomorphism, and by part (iii), the right hand
morphism is a nil-isomorphsm on the generic points of Z; say they are η1, . . . , ηl.
Because G′ has everywhere good reduction and Z is normal, G′ is the maximal
extension of G′|V for any dense open V ⊂ Z, cf. Proposition 11.9. In particular
this implies that

G′⊗̂AAp = i∗j#F̃ ∩
⊕
j

(G′⊗̂AAp)ηj .

Therefore the cokernel of α : G′⊗̂AAp ↪−→ i∗j#F̃ is a torsion free τ -sheaf. As this
cokernel is generically nilpotent, it is nilpotent and thus α is a nil-isomorphism.
This easily implies the same for the morphisms in (60).

(iii): By Proposition 11.35, we may assume that X is the spectrum of a
discrete valuation ring V with fraction field K, residue field k̃ and a uniformizer
π, and that j : U ↪→ X is given by the generalization map V→ K. We need to
prove a strengthening of [13], Thm. 4.7.

To work in the notation of loc. cit., define B as the localization of V⊗̂Ap at
the set V⊗̂Ap r

⋃
pi, where the pi are the primes associated to (π). Let Q be

the quotient ring of B. By B̂ we denote the completion of B at the ideal πB and
we set Q̂ := B̂⊗BQ. Furthermore, λ will denote the quotient ring of k⊗̂Ap, i.e.,
λ ∼= B/πB. We depict the relevant rings in the following commutative diagram

k⊗̂Ap
_�

��

V⊗̂Ap
_�

��

oooo � � // (V⊗̂Ap)
[

1
π

]
_�

��
λ Boooo

_�

��

� � // Q
_�

��
λ B̂oooo � � // Q̂.

(61)

Note that V⊗̂Ap and (V⊗̂Ap)[1/π] take the role of R[[t]] and K⊗RR[[t]] of loc.
cit., but that the former rings may be finite products of rings of the form R[[t]]
or K ⊗R R[[t]], respectively.

Define N ′ ⊂ N as the global sections of (j#F ′)⊗̂AAp ⊂ j#F̃ and N̄ ′ :=
N ′ ⊗V k̃ and N̄ := N ⊗V k̃ as their reductions modulo π. The latter are τ -
modules on k over Ap and there is a natural map N̄ ′ → N̄ , which is not
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necessarily an inclusion. By [13], Rem. 1.7, there are compatible short exact
sequences

0 // M̄ ′ //
_�

��

N̄ ′

��

// N̄ ′nil
//

��

0

0 // M̄ // N̄ // N̄nil
// 0

of k⊗̂Ap-modules, where τ is nilpotent on the right hand terms and injective on
the left hand terms. Note that by [13], Lem. 1.10, the left vertical map is injec-
tive. We claim that it is an isomorphism. Observe that this claim is equivalent
to the assertion that i∗((j#F ′)⊗̂AAp) ⊂ i∗(j#F̃) is a nil-isomorphism, which in
turn implies that (j#F ′)⊗̂AAp ⊂ j#F̃ is a nil-isomorphism, as asserted.

To prove the claim, we first note that by [13], Thm. 4.7, one has

M̄ ′ ⊗k⊗̂Ap
λ ∼= M̄ ⊗k⊗̂Ap

λ =: M̄λ.

By slightly altering the proof of [13], Prop. 1.22, one can show that there exist
unique submodules M̂ ′ of N̂ ′ := N ′⊗V⊗̂Ap

B̂ and M̂ of N̂ := N ⊗V⊗̂Ap
B̂ which

reduce modulo π to M̄λ. Also note that M̂ and M̂ ′ are direct summands of N̂
and N̂ ′, respectively.

Because M̂ ′ ⊂ M̂ and they have the same reduction mod π, on which τ is
an isomorphism, they agree inside N̂ , cf. [13], Lem. 1.10. Now Lemma 11.16
shows that N = N ⊗V⊗̂Ap

B ∩N [1/π] and analogously for N ′. By considering
the bottom right square of (61), one can furthermore show that inside N ⊗ Q̂
one has N = N ⊗V⊗̂Ap

B̂ ∩N [1/π] and the analogous assertion for N ′. Since N
and N ′ agree when restricted to K, it follows that N [1/π] = N ′[1/π], and hence
that

M ′ := M̂ ′ ∩N ′[1/π] = M := M̂ ∩N [1/π] ⊂ N ′ ⊂ N.
It is easy to see that M̄ ′ is the reduction of M ′ modulo π and M̄ that of M .
Thus it follows M̄ ′ = M̄ , as claimed.

In the notation of [4], Ch. 8, the functor j# on Cohτ (X,A/n) is denoted
Ind◦ j∗ and the following is shown in loc. cit. as part of the comparison between
crystals and étale sheaves for finite coefficients.

Proposition 11.38 There is an isomorphism of functors

(j#F)ét ∼= j∗ét(F ét) : Cohτ (U,A/n)→ Ét(X,A/n),

which maps nil-isomorphisms to isomorphisms. If j#F is coherent, then the
étale sheaf j∗ét(F ét) is constructible.

By an inverse limit argument, the above proposition can be transferred to formal
sites. For this we note that the functor F 7→ F ét extends in a natural way to a
functor F̃ 7→ F̃ ét,p from coherent formal τ -sheaves F̃ over Ap to constructible
étale Ap-sheaves

F̃ ét,p := lim←−
n

(F̃ ⊗A A/(pn))ét.

Theorem 11.39 Suppose X is normal and F̃ ∈ Cohf
τ (X,Ap) is locally free

such that τF̃ is injective and Coker(τF̃ ) is torsion free over Ap. Then there are
functorial isomorphisms

j∗ét(F̃ ét,p) ∼=
(

lim←−
n

j#(F̃ ⊗A A/(pn))
)

ét

∼=
(
j#F̃

)
ét,p

.

Proof: The proof follows from the above proposition and Theorem 11.37.
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As a consequence of Theorems 11.39 and 11.37, we obtain:

Corollary 11.40 Suppose X is normal and G ∈ Cohτ (U,A) is such that τG is
injective and has cokernel which is A-torsion free. Then there is a monomor-
phism

(j#F⊗̂Ap)ét,p ↪−→ j∗ét(F⊗̂Ap)ét,p ∼= (j#(F⊗̂Ap))ét,p,

whose cokernel is supported in codimension at least 2. If furthermore i∗j#F
contains a nil-isomorphic τ -sheaf with everywhere good reduction, then the above
map is an isomorphism.

Remark 11.41 If p ∈ SpecA corresponds to the place v of K, then we also
write F̃ ét,v for F̃ ét,p.

11.4 Maximal extensions of rigid τ-sheaves and crystals

In this subsection, we will consider maximal extensions over an analytic base.
As in Section 8, all schemes X,U,Y, . . . , are over an extension L ⊂ C∞ of K∞.
Let us fix throughout a Zariski-open immersion j : U → X of rigid spaces. We
also choose a closed complement i : Z → Ū of U in the Zariski closure Ū ⊂ X
of U. Let ? ∈ {A,DA,A}.

Definition 11.42 Any G̃ ∈ C̃ohτ (X, ?) with j∗G̃ ∼= F̃ is called an extension
of F̃ .

We define j#F̃ ⊂ j∗F̃ as the union of all extensions G̃ of F̃ .
If j#F̃ is coherent, it is called the maximal extension of F̃ with respect to j.

By modifying the proof of Proposition 11.3, one easily obtains the following
characterization of a maximal extension.

Proposition 11.43 A coherent rigid τ -sheaf G̃ on X is a maximal extension of
F̃ if and only if for all H̃ ∈ C̃ohτ (X, A), the canonical map

Hom gCohτ (X,?)
(H̃, G̃) −→ Hom gCohτ (U,?)

(j∗H̃, F̃)

is an isomorphism.

Definition 11.44 A crystal G̃ ∈ C̃rys(X, ?) is called an extension of F̃ if j∗G̃ ∼=
F̃ . It is called a maximal extension if in addition for all H̃ ∈ Crys(X, ?), the
canonical map

HomCrys(X,?)(H̃, G̃) −→ HomCrys(U,?)(j∗H̃, F̃)

is an isomorphism.

As in the algebraic case, the functor j# is neither exact, nor preserves coherence
of rigid τ -sheaves.

Because coherence is a local property, the following result is immediate:

Proposition 11.45 Let {Ui} be an admissible open cover of X. Suppose G̃ is
an extension of F̃ such that each G̃|Ui

is a maximal extension of F̃ |Ui∩U. Then
G̃ is a maximal extension of F̃ .

Using Proposition 8.4, the above proposition and the fact that any Zariski-open
subset of an affinoid is an affinoid, one may carry over the proof of Proposi-
tion 11.5 to the rigid site. This yields:
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Proposition 11.46 Suppose F̃ ∈ C̃ohτ (U, ?) has a maximal extension G̃ ∈
C̃ohτ (X, ?). Then the crystal represented by G̃ is a maximal extension of the
crystal represented by F̃ .

Definition 11.47 A rigid τ -sheaf G̃ on X is said to have good reduction on Z
if the map

τi∗G̃ : (σ × id)∗i∗G̃ → i∗G̃

is injective.
A locally free extension G̃ of F̃ ∈ Cohτ (U, ?) is called good if τF̃ is injective

and G̃ has good reduction to Y.

Proposition 11.48 If X is a smooth curve and X r U is finite, then any good
extension is maximal.

The proof is analogous to that of Proposition 11.9. It will be omitted, because
the crucial part of the argument is similar to the one given in the proof of Propo-
sition 11.50. In the rigid site all points are closed. Therefore it is not obvious
how to carry over the proof of Proposition 11.9 to general normal domains X.

As a consequence, if G̃ is a rigid τ -sheaf attached to a family of A-motives
on X and U is a dense open subset of X, then G̃ is the maximal extension of
the restriction j∗G̃. Also, we note the following corollary which is analogous to
Corollary 11.10.

Corollary 11.49 Suppose X is a smooth curve and X r U is finite. Then the
rigid τ -sheaf 1̃lX,? is the maximal extension of 1̃lU,?.

For curves, the following result gives a criterion for the functor j# to com-
mute with rigidification.

Proposition 11.50 Suppose X is a smooth curve and F a torsion free τ -sheaf
on the dense open subset U of X. Suppose j#F is coherent. Then the natural
inclusion (j#F)DA-rig ↪→ j#(FDA-rig) on X := Xrig is an isomorphism. In
particular, j#(FDA-rig) exists and (i∗(j#F))DA-rig ∼= i∗j#(FDA-rig).

Proof: We argue by contradiction and assume that there exists a rigid τ -sheaf
G̃ on X such that the inclusion (j#F)DA-rig ⊂ G̃ is strict. Let x be a point in
XrU at which one has strict containment. Let V be the discrete valuation ring
of the completion of OX,x. By our choice of x and faithful flatness of OX,x → V,
the base change morphism β : Spec V → X preserves the strict containment, so
that one has a strict inclusion

(β∗(j#F))A-an ⊂ β∗G̃. (62)

Because β∗(j#F) is a maximal extension of β∗F , Proposition 11.20(c) implies
that (β∗(j#F))A-an = j#((β∗F)A-an). Hence the coherent sheaf β∗G must be
contained in it, a contradiction to (62) being a strict containment.
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11.5 The maximal extension of FDA-an
K

In Subsection 11.2, we studied the algebraic object j#F (n)
K using analytical re-

sults. In this subsection, we want to investigate the τ -invariants of (j#F (n)
K )DA-rig

on the cuspidal affinoids of the standard cover of M
rig

K .
The idea is that at a point z near a fixed cusp one has, due to Drinfeld, an

exact sequence
0 −→ Λ̄ −→ C∞

eΛ̄−→ C∞ −→ 0,

for a suitable rank 1 lattice Λ̄ where the group in the middle has the structure
of a rank one Drinfeld-module and that on the left the structure of a rank 2
Drinfeld-module. The rank 1 Drinfeld-module extends to the cusp, the rank
2 Drinfeld module degenerates at the cusp. Passing to the associated analytic
DA-motives yields a short exact sequence

0 −→ HomA(Λ̄,ΩA)⊗A 1̃lSpec C∞,DA
−→ M̃2,z −→ M̃1,z −→ 0.

Here the M̃i,z are the DA-analytic A-motives of rank i attached to the Drinfeld-
modules of rank i. The main result of this subsection is to provide a construction
which shows that the above short exact sequence exists in a uniform way near
any fixed cusp, and hence that the unit-τ -sheaf is a τ -subsheaf of the maximal
extension of M̃2.

By Theorem 4.16, we have M
rig

K
∼= qνΓν\Ω̄ via the isomorphism ξ̄, where the

ν are representatives of ClK. The cuspidal affinoids are most easily described in
local notation, i.e., by fixing a ν. As the definition of maximal extension is of
a local nature, cf. Proposition 11.45, it, too, can be defined over an individual
component. So while we are working in this local setting, let us drop the index ν.

As in Section 3, we fix an arithmetic subgroup Γ of GL2(K) which is p′-
torsion free (by admissibility of K), and a Γ-stable lattice Λ of K2 (the lattice
Λxν of Section 4). Let s be a rational cusp, which, without loss of generality,
we assume to be (0 : 1). We recall some more notation from Section 3, and in
particular its last subsection. By Ωs, we denote the rigid space

⋃
t Ut where the

union is over all simplices in the subtree Ts of T∞ which belong to the end s.
By Γs ⊂ Γ, the stabilizer of s under Γ is denoted. Because Γ is p′-torsion free,
we have

Γs =
{(

1 b
0 1

)
: b ∈ Is

}
for some fractional almost-ideal Is. In Lemma 3.31, we observed that, by adding
a single puncture to Γs\Ωs, we obtain an affinoid subdomain Γs\Ω̄ of P1,rig

K∞
.

For every (y0, y1) ∈ Λ, we defined a section s(y0,y1) : Ω→ C∞ : z 7→ y0z+y1.
Thus we have a map Λ → OΩ. For z ∈ Ω, let Λz be the discrete rank 2 lattice
of C∞ given by {y0z+ y1 : (y0, y1) ∈ Λ}. The Drinfeld-module ψ on Ω attached
to Λ was defined by

OΩ
s 7→eΛ◦s //

s 7→as
��

OΩ

s 7→ψa◦s
��

OΩ
s 7→eΛ◦s // OΩ,

where (eΛ ◦ s)(z) = eΛz
(s(z)).

We set Λ1 := ΛΓs = {(y0, y1) ∈ Λ : y0 = 0}, which is a saturated submodule
of Λ, and define Λ̄ := Λ/Λ1. Furthermore, define Λ′1 := {y1 : (0, y1) ∈ Λ} and
Λ0 := {y0 ∈ K : ∃y1 ∈ K : (y0, y1) ∈ Λ}. The map (y0, y1) → y0, induces an
isomorphism Λ̄ ∼= Λ0. Because Λ1 is Γs-invariant, it gives rise to a local system

0 −→ Λ′1 −→ OΓs\Ωs
(Γs\Ωs)

eΛ′1−→ OΓs\Ωs
(Γs\Ωs).
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The exponential eΛ′1 defines a rank one Drinfeld-module on Γs\Ωs, which we
denote by ϕ. Note that {y0z + y1 : (y0, y1) ∈ Λ1} is independent of z, and so
there is no need to introduce Λ1,z.

The sections s(y0,y1) induce locally analytic sections of OΓs\Ωs
. However for

y0 6= 0 these are not Γt-invariant for t ∈ Ts, and hence the sections are not rigid
analytic. Consider the commutative diagram

OΓs\Ωs
(Γs\Ωs)

s 7→eΛ′1◦s// OΓs\Ωs
(Γs\Ωs)

Λ

OO

(y0,y1) 7→y0 // //

(y0,y1) 7→sy0,y1

OO

Λ0,

y0 7→(z 7→eΛ′1 (y0z))z∈Γs\Ωs

OO

where we claim that for y0 ∈ Λ0 the section Ωs → C∞ : z 7→ eΛ′1(y0z) is
invariant under the action of Γs, and hence that the right hand vertical map

is well-defined: Fix γ =
(

1 b
0 1

)
∈ Γs. Since γ acts on Λ, it follows that for

(y0, y1) ∈ Λ and b ∈ Is we have (y0,−by0 + y1) ∈ Λ, and hence by additivity of
Λ that by0 ∈ Λ′1. Therefore

(eΛ′1(y0γz), γz) = (eΛ′1(y0z + by0), γz) = (eΛ′1(y0z) + eΛ′1(by0), γz)
= (eΛ′1(y0z), γz).

This finishes the proof of the claim.
For given y0 ∈ Λ0, we denote the corresponding section z 7→ eΛ′1(y0z) by

s̄y0 . A straightforward calculation shows that ϕa(s̄y0) = s̄ay0 . Thus if we have
A act on C∞ via ϕ, then for each z the set Λ̄z := {eΛ′1(y0z) : y0 ∈ Λ} defines
a discrete A-lattice of rank one. It is easily checked that the following diagram
commutes

OΓs\Ωs

s 7→eΛ̄◦s //

s 7→ϕa◦s
��

OΓs\Ωs

s 7→ψa◦s
��

OΓs\Ωs

s 7→eΛ̄◦s // OΓs\Ωs
.

By E1 we denote the A-module corresponding to the rank one Drinfeld-
module defined by ϕ, and by E2 that defined by ψ. The map (w, z) 7→ (eΛ̄z

(w), z)
defines a rigid analytic map E1 → E2 on Γs\Ωs defined overK∞. Let M̃1 denote
the rigid A-motive on Γs\Ωs corresponding to E1 and M̃2 the one corresponding
to E2. Then the above yields a morphism M̃2 → M̃1 in C̃ohτ (Γs\Ωs, A). We
define H̃ and C̃ via the four term exact sequence

0 −→ H̃ −→ M̃2 −→ M̃1 −→ C̃ −→ 0.

The following summarizes the central result of this subsection:

Theorem 11.51 We have C̃ = 0 and

H̃DA-rig ∼= HomA(Λ̄,ΩA)⊗A 1̃lΓs\Ωs,DA
.

As a consequence, we will in the end obtain the following important corollary:

Corollary 11.52 For all n ≥ 0, the DA-rigid τ -sheaf Symn M̃DA-rig
2 admits a

maximal extension under the Zariski-open immersion

js : Γs\Ωs → Γs\Ω̄s.

It satisfies (Symn(M̃DA-rig
2 )max)τ ∼= HomA(Λ̄,ΩA)⊗n.
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We first prove C̃ = 0. For this we need the following lemma.

Lemma 11.53 Let F̃ be an A-motive on C∞ and

0 −→ K̃ −→ F̃ −→ G̃ −→ 0

a short exact sequence of A-rigid τ -sheaves on C∞. Then for any non-zero ideal
l of A one has a commutative diagram

K̃/l //

��

F̃/l //

∼=
��

G̃/l //

∼=
��

0

(K̃/l)τ ⊗k C∞ // (F̃/l)τ ⊗k C∞ // // (G̃/l)τ ⊗k C∞ // 0,

where the top sequence is right exact, the bottom sequence is exact at (G̃/l)τ ⊗
C∞, and the middle and right vertical maps are isomorphisms. If furthermore
G̃ is projective over C∞ ⊗k A, then both horizontal sequences are short exact
and all three vertical maps are isomorphisms.

Proof: By left exactness of ⊗, one has a left exact sequence of τ -sheaves

K̃/l −→ F̃/l −→ G̃/l −→ 0. (63)

Because F̃ is an A-motive, the induced τ is an isomorphism on F̃/l. Lang’s
theorem implies that (F̃/l)τ ⊗k C∞ ∼= F̃/l. The analogous statements for G̃ in
place of F̃ hold, too.

If G̃ is projective, then the sequence (63) is short exact, and the induced τ

on K̃/l is an isomorphism as well.

Proof of C̃ = 0: It suffices to show C̃ = 0 pointwise for all z ∈ Γs\Ωs. Special-
ized to any such z, one has the short exact sequence

0 −→ Λ0 −→ C∞
eΛ̄z−→ C∞ −→ 0.

It yields a short exact sequence of l-torsion points for any non-zero ideal l of A.
Interpreted in terms of the associated τ -sheaves, this implies that

(M̃2,z/l)τ −→→ (M̃1,z/l)τ

is surjective. The above lemma and the definition of C̃ thus imply that (C̃z/l)τ =
0 for all non-zero ideals l of A, and so in particular that C̃z/l = 0 for all prime
ideals l of A. Therefore Supp C̃z ⊂ Spec C∞ ⊗k A is finite and disjoint from
{C∞ ⊗ l : l a prime ideal of A}.

The epimorphism M̃1 −→→ C̃ induces a morphism of short exact sequences

0 // σ∗C∞,AM̃1,z

����

// M̃1,z

����

// C̃′z

����

// 0

0 // σ∗C∞,AC̃z // C̃z // C̃′′z // 0,

where C̃′z and C̃′′z are defined by the diagram. The surjectivity on the right
follows from the snake lemma. Because C̃′z is supported on the prime ideal
generated by ι(a)⊗ 1− 1⊗ a, so must be C̃′′z .
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Now σC∞,A acts on the prime ideals of C∞ ⊗k A and the only prime ideals
with finite orbits are those of the form C∞ ⊗ l where l is a prime ideal of A.
This shows that C̃ can only have finite support if C̃′′z = 0. But in this case
σ∗C∞,AC̃z −→ C̃z is an isomorphism. By the same reasoning it follows that C̃z
has its support in the set of primes C∞ ⊗ l, and by the above C̃z = 0.

Above we defined A-modules E i, i = 1, 2 over Γs\Ωs. Pulling these back
along πs : Ωs → Γs\Ωs, we obtain A-modules on Ωs, which we denote by E ′i.
The corresponding A-rigid τ -sheaves are called M̃′i. Furthermore by H̃′, we
denote the kernel of M̃′2 → M̃′1. On the standard affinoids of Ωs, the map πs
is finite flat, and hence H̃′ is isomorphic to the pullback of H̃ along πs, and we
have a short exact sequence

0 −→ H̃′ −→ M̃′2 −→ M̃′1 −→ 0. (64)

Let us apply the left exact functor Hom
C̃ohτ (Ωs,DA)

( , 1̃lΩs,DA
⊗A ΩA) to the

above sequence, and make use of the results of Subsection 9.2. We obtain the
commutative diagram

0

��

0

��
Λ1
∼= Γ(Ωs,H∗(E ′1))

∼= //

��

Hom
C̃ohτ (Ωs,DA)

(M̃′1, 1̃lΩs,DA
⊗A ΩA)

��
Λ ∼= Γ(Ωs,H∗(E ′2))

∼= //

��

Hom
C̃ohτ (Ωs,DA)

(M̃′2, 1̃lΩs,DA
⊗A ΩA)

��

Λ̄ //

��

Hom
C̃ohτ (Ωs,DA)

(H̃′, 1̃lΩs,DA
⊗A ΩA)

0,

(65)

where the columns as displayed are exact, and the top and middle horizon-
tal maps are isomorphisms. Therefore the bottom horizontal map must be a
monomorphism.

Lemma 11.54 The bottom horizontal map in (65) is an isomorphism.

Proof: It suffices to prove the lemma for the fiber at any closed point, say
z ∈ Ωs. Because the sheaves M̃′i are locally free of rank i, the sheaf H̃′ must
be free of rank 1. Hence by [1], Lem. 2.10.6, the fiber H̃′z at z is isomorphic to
HomA(P,ΩA)⊗ 1̃lC∞,A for some projective A-module P of rank one. We need to
show that the map Λ̄→ P obtained from the above diagram is an isomorphism.

The fiber at z of the short exact sequence (64) is isomorphic to the tensor
product over k of the short exact sequence

0 −→ HomA(Λ1,ΩA) −→ HomA(Λ,ΩA) −→ HomA(P,ΩA) −→ 0

with 1̃lC∞,A. Computing l-torsion points for any non-zero ideal l of A yields

0 −→ HomA(Λ1,ΩA)/l −→ HomA(Λ,ΩA)/l −→ HomA(P,ΩA)/l −→ 0. (66)
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But the above exact sequence of l-torsion points arises from the left exact se-
quence

0→ Λ0 → E ′1,z → E ′2,z, (67)

and hence it follows that the cokernel of the sequence (66) is isomorphic to
HomA(Λ̄,ΩA)/l. One concludes that for each l the reduction modulo l of the
map Λ̄→ P is an isomorphism. This proves the lemma.

We now need the following rather technical, if simple, result.

Lemma 11.55 Diagram (65) is compatible with the action of Γs.

Proof: The sequence (64) is induced from the left exact sequence (67). As the
latter is Γs-equivariant, so is the former, and hence all the maps in the right
column are Γs-equivariant.

The Γs-equivariance of the left hand column is rather trivial, and so to
prove the lemma, it suffices to show that the top and middle horizontal maps
are Γs-equivariant. We will only give the proof for E ′2, the proof for E ′1 being
analogous.

Based on ideas of Anderson, the middle horizontal isomorphism was con-
structed in Section 9 as the following composite of morphisms

Λ
∼=−→ Homc

A(K∞/A, E ′2) (68)
∼=−→ Hom

C̃ohτ (Ωs,A)
(M(E ′2),Homc(K∞/A,OΩs

)) (69)
∼=−→ Hom

C̃ohτ (Ωs,DA)
(M̃′2,Homc(K∞/A, 1̃lΩs,DA

⊗A ΩA)), (70)

where one used the Γs-equivariant identification

Homc(K∞/A,OΩs
) ∼= 1̃lΩs,DA

⊗A ΩA

provided by Lemma 9.28. The isomorphism in line (70) is easily seen to be
Γs-equivariant. Let us denote the isomorphisms in lines (68) and (69) by α and
β, respectively.

We first show that β is Γs-equivariant. For this, we may work on a stan-
dard affinoid Ωt of Ωs and fix γ ∈ Γs. The element γ acts directly on E ′2, on
M(E ′2) ∼= Hom(E ′2,Ga)DA-rig and on OΩs

, and in the usual way on modules of
homomorphism between these objects and objects with trivial Γs-action. For
any

f ∈ Homc
A(K∞/A,Γ(Ωs, E ′2))

m ∈ Γ(Ωs,M̃′2) and
c ∈ K∞/A,

we have
f

β7→ (m 7→ (c 7→ m(f(c)))),

and this characterizes β. Since (γf) = γ ◦ f , (γm) = γ ◦m ◦ γ−1, it follows that

(β(γf)m)(c) = (m ◦ γ ◦ f)(c) = γ(((γ−1m) ◦ f)(c))
= γ((β(f)(γ−1m))(c)),

i.e., that β(γf) = γ(βf), as asserted.
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To see that α is Γs-equivariant, we consider the commutative diagram

0 // Λ //

∼=α

��

Lie(E ′2) //

∼=δ

��

E ′2
∼=ε

��
0 // Homc

A(K∞/A, E ′2) // Homc
A(K∞, E ′2) // Homc

A(A, E ′2),

where clearly both rows are Γs-equivariant, and so is the right vertical isomor-
phism. Thus to show that α is Γs-equivariant, it suffices to show this for δ.
For the latter we have the explicit formula (46) in the proof of Proposition 9.2,
namely

Lie(E ′2)→ Homc
A(K∞, E ′2) : x 7→ (ξx : y 7→ expE′2(yx)).

Since γ acts trivially on K∞, we have

ξγx(y) = expE′2(yγx) = expE′2(γ(yx)) = γ(expE′2(yx)) = γ(ξx(y)).

This finally concludes the proof of Lemma 11.55.

Observe now that Λ̄ is Γs-invariant. Therefore the above lemma yields a mono-
morphism

Λ̄ ↪→ Hom
C̃ohτ (Ωs,DA)

((H̃′)Γs , (1̃lΩs,DA
⊗A ΩA)Γs).

Since (M̃′i)Γs ∼= M̃i for i = 1, 2, we have that (H̃′)Γs ∼= H̃. Furthermore it is
rather obvious that

(1̃lΩs,DA
⊗A ΩA)Γs ∼= 1̃lΓs\Ωs,DA

⊗A ΩA.

Thus we have a monomorphism

Λ̄
α′

↪−→ Hom
C̃ohτ (Γs\Ωs,DA)

(H̃, 1̃lΓs\Ωs,DA
⊗A ΩA).

In the proof of Lemma 11.54, we proved that the specialization to any fiber is
an isomorphism. Therefore we have shown:

Corollary 11.56 The map α′ is an isomorphism.

Proof of Theorem 11.51: To conclude the proof of the theorem, it remains to
show

H̃DA-rig ∼= HomA(Λ̄,ΩA)⊗A 1̃lΓs\Ωs,DA
.

However this is immediate from the previous corollary and Theorem 9.19.

Proof of Corollary 11.52: As a consequence of the above corollary and Corol-
lary 11.49, we find that

js#H̃DA-rig ∼= HomA(Λ̄,ΩA)⊗A 1̃lΓs\Ω̄s,DA
⊂ js#M̃DA-rig

2 .

Because by Proposition 11.30 jK#b∗K∞FK is locally free of rank 2, Proposi-
tion 11.50 shows that the sheaf underlying js#M̃2 is a locally free rigid sheaf
of rank 2. Passing to symmetric powers, we obtain(

js#H̃DA-rig
)⊗n ∼= HomA(Λ̄,ΩA)⊗n ⊗A 1̃lΓs\Ω̄s,DA

⊂ js# Symn M̃DA-rig
2

for any n ≥ 0. Combining Proposition 11.50 and Theorem 11.30 shows that
i∗C̃n is nilpotent for the cokernel C̃n of the above inclusion (this also uses that
F 7→ FDA-rig preserves exact sequences). Consider now the left exact sequence

0 −→ ((js#H̃DA-rig)⊗n)τ ∼= HomA(Λ̄,ΩA)⊗n −→ (js# Symn M̃2)τ −→ (C̃n)τ .
By Lemma 10.4, the right hand term vanishes, and thus we have completed the
proof of the corollary.
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12 An Eichler-Shimura isomorphism for double
cusp forms

The analogue of Theorem 10.3 for double cusp forms is formally obtained by
replacing jK!F (n)

K by jK#F (n)
K and the module of integral cusp forms by that

of integral double cusp forms. The main new ingredient compared to the proof
of Theorem 10.3 is the evaluation of (jK#F (n)

K )DA-rig near the cusps, which was
carried out in the Subsection 11.5.

Definition 12.1 The A-crystal of Drinfeld double cusp forms of weight n + 2
and and level K is defined as

Sn+2(K) := ḡK∗jK#F (n)
K .

We define the rigid DA-crystal on SpmK∞ of Drinfeld double cusp forms of
weight n and level K as

S2,DA-rig
n (K) := S2

n(K)DA-rig.

Let v be a place of K. We define the constructible étale v-adic sheaf on SpecA(n)
of Drinfeld double cusp forms of weight n and level K as

S2,ét,v
n (K) := lim←−

m

(S2
n(K)/pmv S2

n(K))ét.

In general the formation of maximal extension does not commute with pullbacks.
However for the base change from A to K∞ and the τ -sheaf F (n)

K it does by
Theorem 11.30. The formation of maximal extension is also known to commute
with analytification, cf. Proposition 11.50. If we define F̃ (n)

K := Symn(F̃DA-rig
K ) ∈

C̃ohτ (M
rig
K ,DA) (note that this is a slight change of conventions, as F̃K is a

τ -sheaf over A), then we have shown the following compatibility:

Proposition 12.2 S2,DA-rig
n+2 (K) ∼= H1(M

rig

K,K∞ , jK#F̃ (n)
K )).

Note also that by Corollary 11.40, there is a canonical isomorphism

S2,ét,v
n+2 (K) ∼= R1

étḡK∗(jK∗ Symn F ét,v
K ).

Theorem 12.3 For each admissible K, there is an isomorphism(
CSt,2
n (K, A)

)∗ ∼= (S2,DA−rig
n (K)

)τ
.

Proof: As in the proof of Theorem 10.3, we denote by M̄ the local system of
GL2(Af )-modules defined by

Mg := (F (n−2),DA-rig
K )τ|Ωg

Cor. 9.20∼= Symn−2(Hom(Λg,ΩA)) for g ∈ GL2(Af ).

Consider the following complex Cst,2K,•

Z[T st,o
K,1 ] −→ Z[T st

K,0]⊕ Z[T st
K,1]⊕ Z[P1(K)×GL2(Af )/K] :

ẽ 7→ −[t(ẽ)] + [ẽ] + bK(t(e)),

where we recall that

(i) t(ẽ) is the target of the oriented edge ẽ,
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(ii) [t(ẽ)] is zero of t(ẽ) is unstable and the symbol for t(ẽ) if it is stable, and

(iii) bK is the map that sends a vertex ṽ to zero, if ṽ is stable, and to the
unique rational end in P1(K)×GL2(Af )/K whose stabilizer contains that
of ṽ, if ṽ is unstable.

By Definitions 5.44 and 5.17, and Propositions 5.15 and Lemma 5.47, we have

H1
(

HomGL2(K)(C
st,2

K,• , M̄)
)
∼=
(
CSt,2
n (K, A)

)∗
.

Let us choose representatives R?
? of the stable edges and vertices as in the

proof of Theorem 10.3. Let us furthermore choose a set of representatives Rc,ν
of the cusps of the component ν, i.e., of representatives of rational ends [s] ∈
GL2(K)\(P1(K) × GL2(Af )/K) in the component ν. For each oriented edge
e ∈ Ro1,ν with target t(e), we have a unique vertex ve ∈ R0,ν and a unique
γe ∈ Γν such that t(e) = γeve. Similarly, we define γ′e ∈ Γν and [se] ∈ Rc,ν such
that bK(t(e)) = γ′e[se], where the symbol [se] is zero whenever t(e) is stable.

With all this notation, we have the following explicit description of the com-
plex HomGL2(K)(C

st,2

K,• , M̄).

HomGL2(K)(C
st

K,0, M̄) //

∼=
��

HomGL2(K)(C
st

K,1, M̄)

∼=
��⊕

ν

( ⊕
v∈R0,ν

Mxν ⊕
⊕

v∈R1,ν

Mxν
⊕

⊕
[s]∈Rc,ν

(Mxν
)Γ[s]

)
//
⊕
ν

⊕
e∈Re

1,ν

Mxν
.

If f1 is the image of f0 under the boundary map, then

f1([ẽ]) = f0([ẽ])− f0([t(ẽ)]) + f0(bK(t(e))) = f0([ē])− γef0([ve]) + γ′ef0([se]).

We recall that [ve] is zero if t(e) is unstable, while [se] is zero if t(e) is stable.
Let us now turn toward the Čech complex of (FK)DA-rig. Write F̃ (n)(K) for

the τ -sheaf Symn F̃(K)DA-rig on ΩK over DA (this is a slight change of conven-
tions, as F̃(K) is a τ -sheaf over A.) By an argument as in the proof of the first
assertion of Corollary 5.22, one has the following identifications:

M
Γ[s]
xν = Symn−2(Hom(Λxν ,ΩA))Γ[s] = Symn−2(Hom(Λxν ,ΩA)Γ[s])

= Symn−2(Hom((Λxν )Γ[s] ,ΩA)) = Hom((Λxν )Γ[s] ,ΩA)⊗(n−2)

Cor. 11.52∼= ((jK#F̃ (n−2)(K)
∣∣∣
U[s]

)τ ,

where U[s] is the cuspidal affinoid of ŪK for the rational end [s] ∈ Rc,ν .
As in the proof of Theorem 10.3, one can describe the standard affinoid cover

ŪK in terms of that of ΩK and an identification of the cuspidal affinoids with
sets Γ[s]\Ω̄. (The latter was not necessary in loc. cit. as there the τ -invariants
vanished near the cusps.) This can again be made explicit using the sets R?

?.
Using the definition of Mg and the identification in the previous paragraph, it
follows easily that the second row of the above diagram is isomorphic to:

C0(ŪK, jK#F̃ (n−2)
K )τ −→ C1(ŪK, jK#F̃ (n−2)

K )τ .

We need to show that the cokernel of the above morphism is isomorphic to
(H1(MK,K∞ , j#F

(n)
K )DA-rig)τ . From Theorem 11.19, we have the short exact

sequence
0 −→ jK!F (n)

K −→ jK#F (n)
K −→ iK∗F (n),∞

K −→ 0. (71)
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Let us consider the following commutative diagram with exact rows and columns
which displays the relationship of the three Čech complex on M

rig

K,K∞ with re-

spect to the cover UK. (We abbreviate F̃ (n),∞
K := F (n),∞,DA-rig

K and write j for
the open immersion MK,K∞ ↪→ MK,K∞ (and its rigid analogue) and i for the
closed immersion of the complement M∞K,K∞ .)

0

��

0

��

0 //

��

H0(M
rig

K,K∞ , j#F̃
(n)
K )

��

// H0(M∞,rigK,K∞ , F̃
(n),∞
K )

��
0 // C0(UK, j!F̃ (n)

K ) //

��

C0(UK, j#F̃ (n)
K ) //

��

C0(UK, i∗F̃ (n),∞
K ) //

��

0

0 // C1(UK, j!F̃ (n)
K ) //

��

C1(UK, j#F̃ (n)
K ) //

��

0

��
H1(M

rig

K,K∞ , j!F̃
(n)
K )

��

// H1(M
rig

K,K∞ , j#F̃
(n)
K )

��

// 0

0 0.

Let δ : H0(M∞,rigK,K∞ , F̃
(n),∞
K ) −→ H1(M

rig

K,K∞ , j!F̃
(n)
K ) denote the connecting ho-

momorphism given by the Snake Lemma. Let us take τ–invariants of this di-
agram. Under this process, the left hand column stays exact by the proof of
Theorem 10.3. Furthermore, the second row also stays exact, because after
taking τ -invariants, one has an isomorphism between the left and middle terms
over all affiniods Ut for which t is not a cusp, and an isomorphism between the
middle and right term over the remaining affinoids. It follows from the Snake
Lemma that one has an isomorphism between

Coker
(
C0(ŪK, j#F̃ (n)

K )τ −→ C1(ŪK, j#F̃ (n)
K )τ

)
and

Coker
(
H0(M∞,rigK,K∞ , F̃

(n),∞
K )τ δ−→

(
H1(M

rig

K,K∞ , j!F̃
(n)
K )
)τ)

.

We now invoke the following simple lemma, whose proof is left to the reader
and can be obtained by choosing ‘good’ representatives of the crystals involved.

Lemma 12.4 Let L be a complete valued field such that K∞ ⊂ L ⊂ C∞.
Suppose

0 −→ F ′ −→ F −→ F ′′ −→ 0

is a short exact sequence in Crys(SpecL,A). Suppose F and F ′ are locally free
and F is uniformizable. Then F ′ is locally free, F ′ and F ′′ are uniformizable,
and the sequence

0 −→ (F ′DA-rig)τ −→ (FDA-rig)τ −→ (F ′′DA-rig)τ −→ 0

is short exact.

By Corollary 10.13, the crystal H1(MK,K∞ , j!F
(n)
K ) is uniformizable, and it is

rather straightforward, to see that H0(M∞K,K∞ , b
∗
K∞
F (n),∞
K ) is uniformizable as
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well. Also both of these are locally free. We want to apply the lemma to the
4-term sequence that arises from the above diagram by the Snake Lemma. For
this, it remains to show that H1(MK,K∞ , j#F

(n)
K ) is locally free. We first note

that jK#F (n−2)
K is a locally free τ -sheaf. It follows that its absolute cohomology

S2
n(K) is a flat A-crystal in the terminology of [4], Ch. 6. Because A is a

Dedekind domain, it follows by op. cit. that b∗KS2
n(K) is representable by a

τ -module which is projective over K ⊗A.
The lemma now yields the following four term exact sequence

0 −→ H0(M
rig

K,K∞ , j#F̃
(n)
K )τ −→ H0(M∞,rigK,K∞ , F̃

(n),∞
K )τ −→

H1(M
rig

K,K∞ , j!F̃
(n)
K )τ −→ H1(M

rig

K,K∞ , j#F̃
(n)
K )τ −→ 0

This completes the proof of the theorem.

For later use, and the application below, we display the following 4-term exact
sequence, which is obtained from (71) by applying ḡK∗:

0→ ḡK∗j#F̃ (n) → ḡ∞K∗F
(n),∞
K → Sn(K)→ S2

n(K)→ 0, (72)

where ḡ∞K : M∞K → SpecA(n) is the structure morphism constructed in Section 2.
Because all the modules in the short exact sequence (71) are flat crystals,

so are the four modules in the above 4-term sequence, cf. [4], Ch. 6. By the
argument given at the end of the above proof, Lemma 12.4 yields the following:

Corollary 12.5 The crystals b∗K∞S
2
n(K) and b∗K∞(Ker(Sn(K) → S2

n(K))) are
uniformizable in the sense of Definition 9.17.

Let us now give an explicit representative of HK,n := b∗K(Ker(Sn(K) →
S2
n(K))). Define H′K,n as the τ -sheaf H0(M∞K,K , b

∗
KF

(n−2),∞
K ). Then the sheaf

underlying HK′,n is projective over K ⊗ A. Its rank is given by the number of
cusps h(K) (of MK,Kalg). More precisely, if for each cusp c of MK,K by Kc we
denote the field of definition of c, so that Kc is a finite extension of K, then
H′K,n =

⊕
c 1lSpecKc,A ⊗A P

n−2
c . Furthermore for each component c′ of MK,K

by K ′c′ we denote the constant field of this component c′, so that K ′c′ is a finite
extension of K. Then H0(MK,K , 1lMK,K ,A

) =
⊕

c′ 1lSpecK′
c′ ,A

, and so the latter
module is of rank d(K) over K ⊗ A, where d(K) is the number of components
of MK,Kalg .

For n > 2 one has sn(K) − s2n(K) = h(K). By the previous corollary,
b∗K∞HK,n has a projective representative of rank h(K) over K∞⊗A on which τ
is injective. Regarded as crystals we have a surjection b∗K∞H

′
K,n −→→ b∗K∞HK,n.

Considering the ranks, it must be an isomorphism, and this easily implies that
HK′,n is a representative of HK,n.

On the other hand, if n = 2, then one simply has jK,#F (0)
K
∼= 1lMK,A

, and a
representative of HK,n is given by

Coker(H0(MK,K , 1lMK,K ,A
) ↪→ H0(M∞K,K , 1lM∞

K,K ,A
)).

We summarize the above in:

Corollary 12.6 The kernel b∗K(Ker(Sn(K)→ S2
n(K))) is represented by

H0(M∞K,K , b
∗
KF

(n−2),∞
K )

if n > 2. If n = 2, it is represented by

Coker
(
H0(MK,K , 1lMK,K ,A

) ↪−→ H0(M∞K,K , 1lM∞
K,K ,A

)
)
.
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By Corollary 11.52 and Lemma 2.11 the τ -sheaf b∗K∞HK′,n is isomorphic to⊕
s̃=([s],gK)∈GL2(K)\(P1(K)×GL2(Af )/K)

1lSpecK∞,A ⊗A Hom((Λg)Γs̃
,ΩA)⊗(n−2),

where Γs̃ is the stabilizer of the end [s̃]. Therefore taking τ -invariants yields:

Lemma 12.7 There is an isomorphism

(HDA-rig
K′,n )τ ∼=

⊕
s̃∈GL2(K)\(P1(K)×GL2(Af )/K)

Hom((Λg)Γs̃ ,ΩA)⊗(n−2)

of projective A-modules of rank h(K).

As a corollary to the above lemma and Theorems 10.3 and 12.3, we find:

Corollary 12.8 As an A-module, the cokernel of CSt,2
n (K, A) ↪−→ CSt

n (K, A)
is isomorphic to ⊕

s∈K\GL2(Af )/K∗B(Af )

(
(Λs)Γs

⊗ Ω∗A
)⊗(n−2)

for n > 2. For n = 2 it is isomorphic to Ah(K)−d(K).

Remark 12.9 The fact that the cokernel of S2
n(K)→ Sn(K) has such a natural

presentation poses the question of whether one can give a simple basis for it,
perhaps even in terms of Hecke eigenforms. Since Poincaré series can often be
used to give a set of representatives of cusp forms modulo double cusp forms,
perhaps they are also useful in constructing eigenforms which are not doubly
cuspidal. We hope to come back to this in future work.
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13 The Hecke-action on cohomology

13.1 Hecke-operators

For the definition of Hecke operators on cohomology, we follow the classical
example of modular forms. We fix an admissible subgroup K of GL2(Â) and
an element y in the corresponding subgroup Y of GL2(Af ). We define K′ :=
yKy−1 ∩ K and K′′ := y−1Ky ∩ K. Let us consider the following diagram

π∗1FK ∼= FK′
αy← π̄∗2FK

�
�
�

FK′′ ∼= π∗2FK

�
�
�

FK

�
�
�

MK′
ry //

π̄2

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
π1

uukkkkkkkkkkkkkkkkkk MK′′

π2

$$HHHHHHHHH FK

�
�
�

MK MK,

(73)

which displays moduli schemes together with their universal Drinfeld modules
(the relationship is indicated by dashed lines). The πi are the natural projections
that arise from the inclusions K′,K′′ ⊂ K. The map ry is induced from the
morphism of Drinfeld moduli schemes given by right multiplication with y on
level structures. Because y ∈ M2(Â) ∩ GL2(Af ), the map ry is given by an
isogeny. This isogeny induces the map αy : π̄∗2FK −→ FK′ . By Theorem 2.14,
the maps πi are finite flat. Also the map ry is finite flat. All morphisms are
considered over SpecA(n) where n is the minimal conductor of K. The map
induced from ry on the F (n)

K is again denoted αy.
We have the adjunction map F (n)

K → π1∗π
∗
1F

(n)
K of Proposition 7.9. Because

π2 is finite flat and F (n)
K is locally free, there is also a trace map π2∗π

∗
2F

(n)
K →

F (n)
K defined above Proposition 7.10. Recall that the structure morphism MK →

SpecA(n) is denoted gK. By finiteness of π̄2 and π1, the spectral sequence for
the composite of pushforwards yields the isomorphisms

RigK!π1∗F (n)
K′

∼=−→ RigK′!F (n)
K′ (74)

RigK!π̄2∗F (n)
K′

∼=−→ RigK′!F (n)
K′ . (75)

We now define the action of KyK on Sn(K) = R1gK!F (n)
K as the following

composite of morphisms:

R1gK!F (n)
K

adj−→ R1gK!π̄2∗π̄
∗
2F

(n)
K

(74)−→ R1gK′!π̄
∗
2F

(n)
K

R1αy−→ R1gK′!π
∗
1F

(n)
K

(75)←− R1gK!π1∗π
∗
1F

(n)
K

trace−→ R1gK!F (n)
K .

Proposition 13.1 The above definition of an action of KyK on R1gK!F (n)
K can

be extended linearly to a right action of H(K,Y).

We leave the details of the proof to the reader, as it is a standard argument for
geometric correspondences. We note that it is natural to have a right action on
cohomology classes and a left action on forms, because Theorem 10.3 identifies
the dual of the space of forms with the τ -invariants of the natural DA-rigid
sheaf on K∞ attached to R1gK!F (n)

K , and because it is well-known that under a
duality a left action turns into a right action.

As the above construction is purely geometric, it can also be applied on the
rigid site to the crystal SDA-rig

n (K), and on the étale site to the étale Av-sheaves
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S ét,v
n (K) for any place v of A, yielding a right action of H(K,Y). Clearly the

functors Sn(K) 7→ Sn(K)DA-rig and Sn(K) 7→ Sn(K)ét,v are Hecke-equivariant.
The above construction also yields an operation of H(K,Y) on the crystal of

Drinfeld double cusp forms. One has to replace F (n)

K̃ by its maximal extension
to the cusps and gK̃ by ḡK̃. It is therefore easy to see that the so-constructed
Hecke operation is compatible with the surjection Sn(K) −→→ S2

n(K).

13.2 Hecke-equivariance of the Eichler-Shimura isomor-
phism

We now prove the following central result on the Eichler-Shimura isomorphisms
for Drinfeld cusp and double cusp forms:

Theorem 13.2 For each admissible K, the isomorphisms(
CSt
n (K, A)

)∗ ∼= (SDA-rig
n (K)

)τ
and

(
CSt,2
n (K, A)

)∗ ∼= (S2,DA-rig
n (K)

)τ
of Theorems 10.3 and 12.3 are Hecke-equivariant.

We have not given a proof of Proposition 6.26, which asserts that the integral
Steinberg cycles are stable under the Hecke action. Below we will prove that,
viewed as a submodule of CSt

n (K,K)∗, the Hecke action on (CSt
n (K, A))∗ given

in Definition 6.19 agrees via our Eichler-Shimura isomorphism with the cohomo-
logically defined Hecke-action on (SDA-rig

n (K))τ . Therefore this will imply that
the Hecke action preserves CSt

n (K, A). So a posteriori, the proof below will also
show Proposition 6.26.

Proof: Clearly it suffices to show Hecke-equivariance for the first isomorphism.
The proof is based on an explicit computation using Čech-complexes for the
standard affinoid covers UK̃ of the spaces M

rig

K̃ for K̃ ∈ {K,K′}. We denote
by π−1

1 (UK) and π̄−1
2 (UK) the respective pullbacks of the affinoid cover UK. By

finite flatness of π1 and π̄2, the resulting covers are again affinoid covers of M
rig

K′ .
The Čech complex C•(UK̃, F̃

(n)

K̃ ) has non-vanishing cohomology only in de-

gree one, and there it is isomorphic toH1(M
rig

K̃,K∞ , F̃
(n)

K̃ ). Also the Čech complex
is concentrated in degrees zero and one, and so one has short exact sequences
with right hand term the H1-term. In this situation, the proof of Theorem 10.3
shows that taking τ -invariants is an exact operation. Therefore to prove the
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desired Hecke-equivariance, we will consider the following diagram

C0(UK, F̃ (n)

K̃ )τ

adj

��

� � // C1(UK, F̃ (n)
K )τ

adj

��

(1)

C0(UK, π̄2∗π̄
∗
2F̃

(n)
K )τ

� � //

∼=
��

C1(UK, π̄2∗π̄
∗
2F̃

(n)
K )τ

∼=
��

(2)

C0(π̄−1
2 (UK), π̄∗2F̃

(n)
K )τ

� � //

��
quis

C1(π̄−1
2 (UK), π̄∗2F̃

(n)
K )τ

��

(3)

C0(UK′ , π̄∗2F̃
(n)
K )τ

� � //

αy

��

C1(UK′ , π̄∗2F̃
(n)
K )τ

αy

��

(4)

C0(UK′ , π∗1F̃
(n)
K )τ

� � // C1(UK′ , π∗1F̃
(n)
K )τ (5)

C0(π−1
1 (UK), π∗1F̃

(n)
K )τ

� � //

OO

quis

∼=
��

C1(π−1
1 (UK), π∗1F̃

(n)
K )τ

∼=
��

OO

(6)

C0(UK, π1∗π
∗
1F̃

(n)
K )τ

� � //

trace

��

C1(UK, π1∗π
∗
1F̃

(n)
K )τ

trace

��

(7)

C0(UK, F̃ (n)
K )τ

� � // C1(UK, F̃ (n)
K )τ , (8)

whose cokernel sequence is given by

H1(UK, F̃ (n)
K )τ

adj−→ H1(UK, π2∗π
∗
2F̃

(n)
K )τ −→ H1(π̄−1

2 (UK), π̄∗2F̃
(n)
K )τ

∼=−→ H1(UK′ , π̄∗2F̃
(n)
K )τ

αy−→ H1(UK′ , π∗1F̃
(n)
K )τ

∼=←− H1(π−1
1 (UK), π∗1F̃

(n)
K )τ

∼=−→ H1(UK, π1∗π
∗
1F̃

(n)
K )τ trace−→ H1(UK, F̃ (n)

K )τ ,

and is the defining sequence of the Hecke operator |KyK. By the isomorphisms
displayed in (74) and (75), the map of complexes from line (2) to line (3) and
from line (6) to line (5) are quasi-isomorphisms. The corresponding maps on
the level of Čech complexes are the maps induced from refining the Čech covers
π̄−1

2 (UK), respectively π−1
1 (UK) to UK′ . All horizontal maps are boundary maps.

We now want to compute the Hecke-operation for elements of the cokernel
of the first line. This can be done by computing the image of an element
f1 ∈ C1(UK, F̃ (n)

K )τ under the composite of all vertical maps. Let fi be the
image in line (i), i = 1, . . . , 8, where given f5, we choose an element f6 such
that the image of f6 under

C1(π−1
1 (UK), π∗1F̃

(n)
K )τ −→ C1(UK′ , F̃ (n)

K′ )τ

is cohomologous to f5.
To have a good combinatorial description of the covers UK̃, we use the same

convention as in the proof of Theorem 10.3:

(i) For the cuspidal affinoids, we make any choices.
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(ii) For affinoids corresponding to stable simplices, we choose representatives
for the the stable vertices, edges and oriented edges. The affinoids are
denoted Ut.

(iii) We use the covering map ΩK −→→ (b∗K∞MK)rig and the choices in (ii) to
identify the affinoids Ut̃ of (b∗K∞MK)rig with the affinoids U′

t̃
of ΩK.

(iv) We have an action of GL2(K) on the standard affinoids Ut̃ of ΩK and their
intersections.

We may evaluate f on all affinoids U′
t̃

with t̃ stable and on their intersections.
Therefore there is no need to explicitly give names to the representatives chosen
in (i) and (ii). In particular for any ẽ = (e, gK) ∈ T st,o

K,1 , we have a value

f1(ẽ) ∈ Γ(U′ẽ,Symn F̃(K))τ ∼= Symn HomA(Λg,ΩA) =: Mg.

Also, it is quite easy to combinatorially describe the maps induced by π̄2 and
π1 for the spaces ΩK̃.

A simple computation yields

f5(ẽ′) =
{
f1(π̄2(ẽ′)) if π̄2(ẽ′) is stable

0 otherwise.

The only non-trivial step in computing f8 is to give an algorithm which computes
f6 from f5. Because the map from line (6) to line (5) is a quasi-isomorphism,
we know that the element f5 can be altered by adding a suitable coboundary
f0
5 coming from C0(UK′ , π∗1F̃

(n)
K )τ in such a way that f ′5 := f5 + f0

5 lies in the
image of that map. To be in the image of C1(π−1

1 (UK), π∗1F̃
(n)
K )τ means that f ′5

takes the value zero on all oriented stable edges ẽ′ such that π1(ẽ′) is unstable.
Thus we need to find f0

5 such that f ′5 takes the value zero on such ẽ′.
As in the construction of Hecke operators on Steinberg cycles, the concept

of sources will play the essential role.

Definition 13.3 For an edge ẽ′ of T oK′,1, one defines its π1-source srcπ1(ẽ
′) ⊂

T oK′,1 as

{ẽ′ ∈ T oK′,1 : π1(ẽ′) ∈ src(π1(ẽ′)) and ẽ′ is in the same component of TK′ as ẽ′}.

Note that π−1
1 (src(π1(ẽ′))) is automatically contained in T o,stK′,1, so that in fact

srcπ1(ẽ
′) ⊂ T o,stK′,1. Using the finiteness of π1, it is easy to see that srcπ1(ẽ

′) is
finite for any ẽ′ ∈ T oK′,1.

Claim: If ẽ′ is stable, then the edges in srcπ1(ẽ
′) together with ẽ′ form the

boundary of a finite connected subgraph Sẽ′ in the stable region of TK′ :
The claim is obvious if π1(ẽ′) is stable, and so we assume otherwise. For ẽ′ ∈
srcπ1(ẽ

′) we denote by s be the rational half line through ẽ′ which starts at ẽ′

and whose image s′ under π1 is in the unstable part of TK except for π(ẽ′).
While moving along s′ from π1(ẽ′) to π1(ẽ′), the stabilizers of the respective
edges do not become smaller. Therefore the stabilizers of the edges between ẽ′

and ẽ′ exhibit the same behavior, and hence they are all trivial. The claim is
thus shown.

Let t = π1(ẽ), if π1(ẽ) is stable, and otherwise let t be the cusp corresponding
to the end of GL2(K)\TK which contains π1(ẽ). Then the affinoids Uẽ′ for
ẽ′ ∈ Sẽ′ are in one connected component of the affinoid π−1

1 (Ut). Furthermore
for all stable simplices t̃ of TK one has

Γ(π−1
1 (U′t̃), π

∗
1F̃

(n)
K )τ ∼=

⊕
t̃′∈π−1

1 (t̃)

Γ(U′t̃′ , F̃
(n)
K′ )τ .
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Let f ′′5 be the 1-cocycle which takes the value f5(Uẽ′) on ẽ′, the value −f5(U′ẽ′)
on srcπ1(ẽ

′) and zero on the remaining oriented edges.
Claim: The 1-cocycle f ′′5 is a coboundary.

Note that if the claim is shown, it provides an algorithm to define a coboundary
f0
5 such that f ′5 := f5 + f0

5 arises from a function f6. The proof of the claim
is a simple combinatorial exercise. Let us induct on the size of the finite graph
Sẽ′ . Observe first, that by using 0-cocycles supported on non-oriented edges,
we may always assume that π1(ẽ′) points toward an end (we use this 0-cocycle
to change the orientation of all boundary edges of the graph). In this case,
we first use a 0-cocycle with support on the non-oriented edge ẽ′ to obtain the
value 0 on ẽ′ and f6(U′ẽ′) on −ẽ′ and then we use the unique vertex ṽ′ which
lies at the tip of −ẽ′ to obtain the value 0 on −ẽ′ as well and the value f6(ẽ′)
on all other adjacent edges of ṽ′′ which are not in srcπ1(ẽ

′) and the value 0 on
the other adjacent edges. All these edges are contained in the graph Sẽ′ . If
we remove ṽ′ and ẽ′ from the graph, it decomposes into at most |k| disjoint
connected subgraphs, to all of which the inductive hypothesis applies. Thus the
claim is shown.

Next we give an expression for f8 in terms of f1. The trace map, as well as
the map from line (6) to line (7) are easy to compute on the level of the Čech
complex. Using the above algorithm, one obtains the following explicit formula:

f8(ẽ) =
∑

ẽ′∈π−1
1 (ẽ)

f6(ẽ′)

=
∑

ẽ′∈π−1
1 (ẽ)

∑
ẽ′∈srcπ1 (ẽ′)

ẽ′∈T st,o
K′,1

f5(ẽ′)

=
∑

ẽ′∈π−1
1 (ẽ)

∑
ẽ′∈srcπ1 (ẽ′)

π̄2(ẽ′)∈T st,o
K,1

f1(π̄2(ẽ′)).

We now use the following notation: Say ẽ = (e, hK), ẽ′ = (e′, gK′). Say we have
K = qzjK′. Then KyK = qyjK with yj = zjy. Summing over the ẽ′ in π−1

1 (ẽ)
is the same as summing over the (e, hzjK′). Thus we have

f8(ẽ) =
∑
j

∑
(e,hzjK′)∈srcπ1 (e′,gK′)

(e′,gyK)∈T st,o
K,1

f1((e′, gyK))

=
∑
j

∑
(e,hK)∈src(e′,hK)

(e′,hyjK)∈T st,o
K,1

f1((e′, hyjK))

=
∑
j

∑
ẽ∈src(e′,g̃y

−1
j

K)

(e′,g̃K)∈T st,o
K,1

f1((e′, g̃K)).

As in the proof of Theorem 10.3, let M̄ be the local system defined by the Mg.
Our conventions regarding the covers Ut and U′t identify f1 with an element in
HomGL2(k)(C̄stK,1, M̄). The computation just performed shows that under this
identification the cohomologically defined Hecke operation of KyK agrees, up
to coboundaries, with f1 ◦ |KyK, where KyK is the Hecke action on C̄stK,1 of
Definition 6.19. But the latter is precisely the Hecke operation on (CSt

n (K, A))∗,
and thus we have completed the proof of Theorem 13.2.
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13.3 Decomposing the crystal Sn(K)

In this subsection we will show that Sn(K) is representable by a torsion free
τ -sheaf with injective τ . Once this has been accomplished, we define a (non-
canonical) filtration on the representing τ -sheaf into saturated irreducible Hecke
submodules. At the end, these subquotients are shown to be uniformizable
crystals.

Proposition 13.4 For every n ∈ N0 and any admissible K with minimal con-
ductor n, the crystal Sn(K) is representable by a τ -sheaf whose underlying mod-
ule is torsion free on A(n) ⊗ A and on which τ is injective with cokernel of
codimension at least one.

Proof: The scheme MK is smooth and affine over SpecA(n) of relative dimen-
sion one. Therefore by adding a τ -sheaf whose underlying module is projective
and on which τ = 0, we may represent the crystal F (n)

K by a free τ -sheaf G. In
particular G ∼= G0 ⊗k A for some free sheaf G0

∼= OlMK
on MK. By the remark

after Theorem 7.12, there exists an m > 0 such that jK!F (n)
K is representable

by a τ -sheaf G′ whose underlying sheaf is G′0 ⊗k A with G′0 ∼= OlMK
(mM∞K ).

Because M∞K is finite flat over SpecA(n), it follows that R1
∗ḡKG′0 has constant

rank over SpecA(n), i.e., that

H := R1
∗ḡKG′0 ⊗k A ∼= R1

∗ḡKG′

is locally free over SpecA(n)×A.
We have seen in Lemma 10.8 that there is an N such that b∗Kτ

j(H) has the
properties asserted for τ . Because τ j(H) is a submodule of the free sheaf H, it
is torsion free. Furthermore generic injectivity of τ on τ j(H) implies injectivity
of τ . Therefore (τ j(H), τ) has all the properties asserted in the proposition.

In the sequel we will write Sn(K) for a τ -sheaf constructed in the proof of the
proposition.

Remark 13.5 We would like to strengthen the above proposition by showing
that for admissible K the crystal S2

n(K) is representable by a τ -sheaf which is
locally free and on which τ is a monomorphism. As such a representation clearly
exists for the kernel of Sn(K)→ S2

n(K), this would give a decomposition of the
crystal Sn(K) into pieces which behave well under base and coefficient change on
the level of τ -sheaves. Then one could often work in the more explicit category
of τ -sheaves instead of the category of crystals. In the example of Section 15
the crystal S2

n(K) has indeed a locally free representative of the expected rank,
but we have no general results.

With finite coefficients, the situation is much better understood. Namely, let
p, q be in Max(A) and denote by bkalg

q
is the base change morphism correspond-

ing to A(n)→ kalg
q for a space above SpecA(n). Then the results of Pink in [40]

imply that R1ḡK∗jK#b∗
kalg

q
Symn(FK/pFK) can be represented by a locally free

τ -sheaf of the expected rank on Spec kalg
p over A/p.

Let f1, . . . , fn be a C∞-basis of Sn(K) such that for each j, the element
fj+1 considered in Sn(K)/(f1, . . . , fj) is a Hecke eigenform. Say we order the fi
such that we first have double cusp forms and then other forms. Furthermore,
we order them so that forms conjugate under the action of Gal(Ksep/K) are
numbered consecutively. Note that given some fj with Hecke eigenvalues ah
for h ∈ H(K,Y), there exists a Hecke eigenform in Sn(K) with the same set of
eigenvalues.
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Let now M ′0 ⊂M ′1 ⊂ . . .M ′k be the corresponding filtration of CSt
n (K, A)∗⊗A

K, so that the successive subquotients correspond bijectively to the Galois con-
jugacy classes of the fj , and each such subquotient is an irreducible H(K,Y)-
module. Define the filtration Mi of CSt

n (K, A)∗ ∼= b∗K∞Sn(K) by intersecting
the M ′i with CSt

n (K, A)∗. The successive subquotients are projective over A and
carry an action of H(K,Y), i.e., there are maps H(K,Y) → End(Mi/Mi−1).
The image is denoted by Ai. It is a finite extension of A of degree equal to
the rank of Mi/Mi−1. After tensoring with K over A, one has a non-canonical
isomorphism Ai ⊗A K ∼= (Mi/Mi−1)⊗A K.

Let M̃i be the corresponding filtration on (b∗K∞Sn(K))DA-rig, so that M̃i
∼=

1̃lSpmK∞,DA
⊗A Mi. Because τ commutes with the Hecke action, the M̃i are

Hecke-modules and on the subquotients the Hecke algebra acts in the obvious
way by multiplication with Ai on Mi. Clearly b∗KSn(K) is a sub-τ sheaf of
(b∗K∞Sn(K))DA-rig, and its induced filtration is denoted by Mi. Comparing
ranks, it follows that rankAMi = rankK⊗AMi.

Definition 13.6 Define Sn,i(K) as the sub τ -sheaf of Sn(K) obtained by inter-
secting Mi with the sheaf underlying Sn(K) and

Sn,i := Sn,i(K)/Sn,i−1(K).

In this way, we have attached to each conjugacy class of fj a torsion free sub-
quotient Sn,i(K) with injective τ -action, multiplication by Ai and generic rank
equal to the number of conjugates of fj , which in turn is equal to the rank of
Ai over A. If the need arises, we write ij for the i corresponding to j.

The assignment fj 7→ Sn,ij (K) is in no way canonical. So in all the construc-
tions below the independence of the chosen filtration will be an issue. However
note that by the Jordan Hölder theorem the subquotients M ′i/M

′
i+1 are inde-

pendent of the chosen filtration. Analogously, the subquotients Mi/Mi−1 if
tensored with Frac(K ⊗A) over K ⊗A are independent of any choices.

Note also that for any of the objects indexed by i, the action of H(K,Y) is
an action on coefficients in the following sense. Let Ã be a finite extension of A
which contains all the Ai. Then after change of coefficients ⊗AÃ and suitable
identifications, the action of Ai is given by multiplication on the coefficients.

The above discussion, Corollary 12.5 and an inductive argument based on
Lemma 12.4 show:

Proposition 13.7 The crystals b∗K∞Sn,i are uniformizable and can be repre-
sented by τ -sheaves which are projective of rank one over K∞ ⊗Ai.

Remark 13.8 In Section 15 we will compute an explicit example. It will turn
out that the pieces K∞ ⊗Ai are pure, in a suitable sense. It seems likely to us
that this holds in general, and we hope to come back to this question in future
work.

13.4 The Eichler-Shimura relation

As in the classical case, there is an Eichler-Shimura relation for the geometric
correspondence Tp if we base change to the fiber at p. It gives an expression
for Tp in terms of the operation of Frobenius at p. This will eventually yield a
characterization of Galois representations attached to cuspidal Drinfeld eigen-
forms.

We fix an admissible K with minimal conductor n and p ∈ Max(A(n)). Let
gK,p denote the structure morphism of MK,p and F (n)

K,p := b∗kp
F (n)
K . Recall that
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the Hecke operator Tp comes from the correspondence given by y =
(
πp 0
0 1

)
∈

GL2(Ap), where πp is a uniformizer at p.
We write Fp for the absolute Frobenius on MK,kp , i.e. for σdp

MK,kp
, where

dp = [kp : k]. It induces an action on Drinfeld modules and level structures
denoted

(ϕ, [ψ])
Fp7→ (ϕ(p), [ψ(p)]).

Since ϕ → ϕ(p) is a p-isogeny, the map Fp on Drinfeld-modules fits into a
diagram

(ϕ, [ψ])
*

Ip

**
�
Fp

// (ϕ(p), [ψ(p)]) �
Vp

// (ϕ/ϕ[p], [ψ/ϕ[p]]),

where Ip assigns to any pair (ϕ, [ψ]) its quotient by the full p-torsion scheme ϕ[p].

Lemma 13.9 Let α′y : F ∗pM(ϕ) ∼=M(F ∗pϕ) →M(ϕ) denote the map induced
from the isogeny Fp : ϕ → F ∗pϕ, where M(ϕ) is the τ -sheaf attached to the
Drinfeld-module ϕ. Then one has

α′y = τ
dp

M(ϕ)

Proof: Let us explicitly describe the map Fp on a Drinfeld-module

ϕ : A→ R{τ} : a 7→
∑
i

αi(a)τ i

in standard form. The Drinfeld-module ϕ(p) is then given by

ϕ(p) : A→ R{τ} : a 7→
∑
i

αq
dp

i (a)τ i

and the isogeny ϕ 7→ ϕ(p) is the element τdp ∈ R{τ}, because one has

τdpϕ = ϕ(p)τdp .

In this case M(ϕ) is given as (R{τ}, τ ′), where A acts on R{τ} by right com-
position with ϕ. The map R{τ} → (σ × id)∗R{τ} in Example 7.7 (b) is given
by left multiplication by τ . It easily follows that τ ′ : (σ × id)∗R{τ} → R{τ} is
given by right multiplication with τ .

Let E(ϕ) denote the A-module attached to ϕ. The isogeny τdp gives rise to
an element in HomG/ SpecR(M(ϕ),M(F ∗pϕ)), simply by composing with τdp ∈
R{τ} ∼=M(ϕ) on the right. It follows that τdp operates in the same way as a
morphism

F ∗pM(ϕ) ∼= HomG/ SpecR(E(F ∗pϕ),Ga) ∼= R{τ}
−→ M ∼= HomG/ SpecR(E(ϕ),Ga) ∼= R{τ}.

Note that the A-operation on the two τ -sheaves displayed is different. By the
previous paragraph, right multiplication with τdp is simply the dp-th iterate of
τ ′. Thus we have identified α′y with τ ′dp .
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Theorem 13.10 (Eichler-Shimura relation) The action of Tp on the crys-
tal b∗kp

Sn(K) ∼= R1gK,p!F (n)
K,p is given by

R1gK,p!F (n)
K,p = σ∗kp

R1gK,p!F (n)
K,p

base change−→ R1gK,p!F
∗
pF

(n)
K,p

α′y−→ R1gK,p!F (n)
K,p.

Proof: Define K′ ⊂ K such that MK′ classifies triples (ϕ, [ψ],H) where ϕ is
a Drinfeld-module, [ψ] is a level K-structure and H is a cyclic non-trivial A/p-
submodule (scheme) of ϕ[p]. In terms of moduli, we have π̄2 : (ϕ, [ψ],H) 7→
(ϕ/H, [ψ/H]) and π1 : (ϕ, [ψ],H) 7→ (ϕ, [ψ]) for the morphisms displayed in
diagram (73). In analogy with the classical situation for elliptic curves one
considers the following diagram

MK,kp qMK,kp

(id,Fp)

xxrrrrrrrrrrrrrrr

Φ=(Φ1,Φ2)

��

(Fp,Ip)

&&LLLLLLLLLLLLLLL

MK,kp MK′,kpπ1
oo

π̄2

// MK,kp ,

where the maps Φi are given in terms of moduli as

Φ1 : (ϕ, [ψ]) 7→ (ϕ, [ψ],KerFp) and Φ2 : (ϕ, [ψ]) 7→ (ϕ(p), [ψ(p)],KerVp).

The maps are clearly well-defined, and, using a degree argument, one can show
that away from the supersingular points the map Φ is an isomorphism. Pulling
back the morphism αy : π∗2F

(n)
K,p → π̄∗1F

(n)
K,p yields a direct sum of maps

(α′y, α
′′
y) : F ∗pF

(n)
K,p ⊕ I

∗
pF

(n)
K,p → F

(n)
K,p ⊕ F

∗
pF

(n)
K,p,

where the morphisms α′y, α
′′
y arise from the corresponding isogenies Fp and Vp,

respectively. In particular α′y agrees with the map in Lemma 13.9.
By the crystal analogue of [9], Lem. 4.6, one therefore has the following

commutative diagram on cohomology

R1gK!F (n)
K,p

adj

��

R1gK!F (n)
K,p

adj

��
R1gK!π̄2∗π̄

∗
2F

(n)
K,p

∼= (74)

��

// R1gK!(Fp∗F
∗
p ⊕ Ip∗I∗p )F (n)

K,p

∼=
��

R1gK′!π̄
∗
2F

(n)
K,p

R1αy

��

// R1gK!(F ∗p ⊕ I∗p )F (n)
K,p

R1(α′y,α
′′
y )

��
R1gK′!π

∗
1F

(n)
K,p

// R1gK!(id∗ ⊕ F ∗p )F (n)
K,p

R1gK!π1∗π
∗
1F

(n)
K,p

∼= (75)

OO

trace

��

// R1gK!(id⊕ Fp∗F
∗
p )F (n)

K,p

∼=

OO

trace

��
R1gK!F (n)

K,p R1gK!F (n)
K,p.
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By Lemma 7.10, the trace map Fp∗F
∗
p → id is zero. Therefore the operator

Tp is defined by the following sequence of morphisms:

R1gK!F (n)
K,p

adj−→ R1gK!Fp∗F
∗
pF

(n)
K,p

∼=−→ R1gK!F
∗
pF

(n)
K,p

R1α′y−→ R1gK!F (n)
K,p.

Finally note that the base change map (σdp × id)∗R1gK!F (n)
K,p −→ R1gK!F

∗
pF

(n)
K,p

is defined as the adjoint of

R1gK!F (n)
K,p −→ (σdp × id)∗R1gK!F

∗
pF

(n)
K,p

∼=−→ R1gK!Fp∗F
∗
pF

(n)
K,p

where the isomorphism on the right is the inverse to the isomorphism in the
previous diagram in the middle. Because σdp × id is the identity, the assertion
of the theorem is shown.

167



14 Galois representations

The purpose of this section is to attach to any Drinfeld cuspidal eigenform f
and any place v of K a continuous Galois representation ρf,v : Gal(Ksep/K)→
GL1(Af,v), for some unique Af,v ⊂ Cv which is a finite extension of Av and
depends on f . This parallels the construction of Deligne in the case of classical
modular forms. As in the classical situation, the connection between f and ρf,v
is given by the Eichler-Shimura relation, so that ρf,v is uniquely determined by
the Hecke eigenvalues of f .

It is unclear whether one should be able to have some kind of multiplicity
one result for double cusp forms, by introducing a theory of new and old forms,
cf. Example 15.4. For all cusp forms such a result is certainly wrong, because
of the cuspidal eigenforms which are not doubly cuspidal, cf. Example 15.7.
Examples for the latter, can also be obtained from [16]. In particular, it is not
clear how to recover an eigenform f if ρf,v is given.

We fix an admissible K and a place v and let p = pv denote the corresponding
prime of A. By n′ we denote the product of p with the minimal conductor n
of K.

Let us first give some results on Sn(K)⊗A/pm.

Proposition 14.1 On SpecA(n′), the τ -sheaf Sn(K) ⊗ A/pm is representable
by a locally free τ -sheaf on which τ is an isomorphism. Furthermore, the étale
sheaf (Sn(K) ⊗ A/pm)ét is locally constant and locally free of rank dpmsn(K)
over k.

Proof: In the proof of Proposition 13.4, we constructed a locally free τ -sheaf on
SpecA(n) which represents Sn(K). Let S ′n,pm(K) be its restriction to SpecA(n′)
with coefficients changed to A/pm. Because τ is a nil-isomorphism, we may
replace S ′n,pm(K) as in loc. cit. by τ j((σn × id)∗S ′n,pm(K)) for any j > 0, which
is again locally free. If we choose j sufficiently large, then generically, τ will be
injective. For later use, let us assume that the j here is larger than the j used
to construct the torsion free representative Sn(K) in Proposition 13.4. Thus
by local freeness τ itself will be injective. Let us fix such a j and denote the
corresponding τ -sheaf by Sn,pm(K).

By Remark 10.15, the dimension of b∗KSn,pm(K) is sn(K), so that Sn,pm(K)
is of rank sn(K). Let us show that τ is an isomorphism. This may be checked
at stalks, i.e. for b∗kq

Sn,pm(K) for all q ∈ SpecA(n′). By Lang’s theorem
this will follow, if we show that the τ -invariants of b∗

kalg
q
Sn,pm(K) have dimen-

sion msn(K)[kp : k] over k. But the module of τ -invariants is isomorphic to
(b∗kq
Sn,pm(K))ét(k

alg
q ) and its dimension can be computed using Theorem 10.12

due to Pink:
Consider jK!FK ⊗A A/pm base changed to the fiber of MK above Spec kq.

Because q is prime to pn, the moduli schemes MK∩K(pm),kq
are smooth over

Spec kp. They are ordinary and the ramification of

MK∩K(pm),kq
−→MK,kq

at the cusps is of p-power order. Also the étale sheaf FK⊗AA/pm describes the
pm-torsion points of the universal Drinfeld module over MK,kp

. In particular,
it is of generic k-dimension mdp. Hence by Theorem 10.12, the Euler-Poincaré
characteristic of b∗kq

(jK!FK ⊗A A/pm)ét is sn(K)dpm. The only non-zero term
when computing the Euler-Poincaré characteristic is the H1(. . .)-term. Because

H1(MK,kp
, b∗kq

, (jK!FK ⊗A A/pm)ét) ∼= (b∗kq
Sn,pm(K))ét,
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we have thus shown that (b∗kq
Sn,pm(K))ét is of the desired dimension. Fur-

thermore our argument implies that Sn,pm(K)ét is locally free of dimension
msn(K)[kp : k] over k, and that Sn,pm(K) is an étale ϕ-sheaf in the sense of
[53], p. 770. Hence by [53], Prop. 6.1, the sheaf Sn,pm(K)ét is locally constant
on SpecA(n′). Thus we have proved all assertions.

Because the j in the proof of the previous proposition is at least as big
as that in Proposition 13.4, there is clearly a nil-isomorphism from Sn(K) ⊗A
A/pm to Sn,pm(K). Therefore the saturation of the images of the Sn,i(K) ⊗A
A/pm in b∗KSn,pm(K) define a filtration Sn,i,pm(K) on Sn,pm(K), such that all
subquotients are locally free étale ϕ-sheaves. One may check that

Sn,i(K)⊗A A/pm → Sn,i,pm(K)

is a nil-isomorphism. Let us denote by Sn,i,pm(K) the successive subquotients.
They are Hecke-invariant, carry an action of Ai and are of rank rankAAi over
SpecA(n′)⊗A A/pm.

Definition 14.2 By S ét,v
n,i (K), we denote lim←−m Sn,i,pm(K)ét and by S ét,v

n,i (K),
the inverse limit lim←−m Sn,i,pm(K)ét.

As a corollary to the previous proposition, we obtain.

Corollary 14.3 The étale sheaves S ét,v
n,i (K) are the subquotients of the filtration

S ét,v
n,i (K) of S ét,v

n (K). They give rise to Galois representations

ρi,v : Gal(Ksep/K) −→ GL1(Av ⊗A Ai) ↪−→ GLrankA Ai
(Av),

which are unramified over SpecA(n′).

Proof: Clearly the Sn,i,pm(K) give rise to a compatible system of Galois repre-
sentations into GLrankA Ai(A/p

m). Therefore it only remains to show that the re-
sulting Av-adic representation, which is denoted ρv,i, factors via GL1(Av⊗AAi).

We know that the stalk at Kalg of S ét,v
n,i (K) is free over Av of rank rankAAi,

and it carries an operation of Ai which commutes with the Galois action. Hence
S ét,v
n,i (K) is an (Av⊗AAi)[Gal(Kalg/K)]-module. Because Sn,i(K) is locally free

over K ⊗ Ai of rank one, where the action of Ai arises from the Hecke action
and that of K is the usual one, it easily follows that S ét,v

n,i (K) is locally free (and
hence free) of rank one over Av ⊗A Ai. Thus the corollary is shown.

Let us now consider the action of Frobq under ρi,v for some unramified
place q ∈ SpecA(n′), where Frobq denotes a choice of geometric Frobenius in
Gal(Ksep/K) at q.

Let Frob′q be the arithmetic Frobenius a 7→ aq
dq ∈ Gal(kalg

q /kq). Because
ρi,v arises from the étale sheaf S ét,v

n (K) over SpecA(n′), the action of Frobq

under ρi,v is the same as the action of (Frob′q)
−1 on the stalk b∗qS ét,v

n (K) at kalg
q .

On MK,kalg
q

, one has(
idMK,kq

× Frob′q
)(
σMK,kq

× idSpec kalg
q

)
= σM

K,k
alg
q

.

Because σM
K,k

alg
q

acts trivially on H1
ét(MK,kalg

q
, (jK!FK⊗̂Av)ét,v) ∼= S ét,v

n (K), it

follows that the action induced from σMK,kq

× idSpec kalg
q

= Fq × idSpec kalg
q

on

cohomology is the inverse of the action induced from idMK,kq

×Frob′q. Therefore

the former is equal to the Galois action of Frobq.
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Theorem 14.4 (Eichler-Shimura relation) The action of Frobq and of Tq

on S ét,v
n (K) agree. The same holds for the subquotients S ét,v

n,i (K).

Proof: By the above observations, it suffices to prove that on b∗
kalg

q
S ét,v
n (K)

the action of Fq × idSpec kalg
q

agrees with that of Tq. An explicit description of
the latter action is obtained from Theorem 13.10 by applying F 7→ F ét and
passing to inverse limits. The definition of F 7→ F ét, given in Subsection 7.3,
implies that (α′y)ét = Frobq, so that Tq on H1

ét(MK,kalg
q
, (jK!FK⊗̂Av)ét,v) is the

composition of the base change morphism

H1(MK,kalg
q
, (jK!FK⊗̂Av)ét,v) −→ H1(MK,kalg

q
, F ∗q (jK!FK⊗̂Av)ét,v)

with the morphism H1(Frobq× id). But this is precisely the definition of Frobq

on H1(. . .), so that the theorem is proved.

Corollary 14.5 Let f be a cuspidal Drinfeld Hecke eigenform (over C∞) and v
a place of v. Let Kf denote the field generated over f by the Hecke eigenvalues aq

of Tq acting on f and let Af be its ring of integers. We choose some isomorphism
ιv : Cv → C∞ which is the identity on K. Then there exists a place v′ of Af
above v and a unique representation

ρf,v : Gal(Ksep/K) −→ GL1((Af )v′)

for some choice (Af )v′ ⊂ Cv such that ρf,v is unramified above SpecA(n′) and
such that for all q prime to n′, one has

ιv(ρf,v(Frob′q)) = ap.

Proof: The existence follows from the previous theorem and the correspon-
dence between conjugacy classes of forms fj on the one hand and crystals
Sn,i(K) on the other: When defining the fj , it was observed that any eigenform
f has the same Hecke eigenvalues as one of the fj . Thus to each f one can
attach a crystal Sn,i(K) with the same Hecke action. This crystal gives rise
to the representation ρv,i of the previous theorem, in which the eigenvalues of
Frobenius are determined by the Hecke operation on S ét,v

n,i (K).
Say a′p is the image of Tp under Ai 7→ Av ⊗A Ai. These eigenvalues a′p

are algebraic over A, and so are the eigenvalues for the Hecke operators Sm.
Together they generate Av ⊗A Ai over Av. Note that Af is the normal closure
of Ai and hence Ai ⊗A Av ⊂ Ai ⊗A Av. Hence there is a unique embedding
(Af )v′ ↪→ Cv such that after composition with ιv the image of a′p equals ap.
The component Gal(Ksep/K)→ GL1((Af )v′) corresponding to v′ of ρv,i has all
the required properties. Finally, having shown existence the uniqueness is clear
by the Cebotarov density theorem.

Remark 14.6 In the classical situation, the Galois representations attached to
modular forms are two-dimensional. Basically this comes from complex conjuga-
tion acting on the Hodge decomposition of H1(. . .). As there is no such decom-
position on the corresponding H1(. . .) in the function field case (the H1,0-term
is missing), one-dimensionality should not come as a surprise.
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Since the Hecke action leaves the kernel of Sn(K) → S2
n(K) invariant, it

is possible to completely determine all Galois representations corresponding to
this kernel. After coefficient and base change to K this kernel is given as∐

x∈K∗B(Af )\GL2(Af )/K

1lN∞
K /(B(Af )∩x−1Kx),K ⊗A P⊗(n−2)

x ,

for suitable A-modules Px of rank one, if n > 2, cf. Lemma 2.11 and Theo-
rem 11.19. In the case n = 2 it is the quotient of this module by some num-
ber of unit τ -sheaves, cf. Corollary 12.8. The scheme N∞K /(B(Af ) ∩ x−1Kx)
parametrizes rank one Drinfeld modules over K with a level structure depend-
ing on x, i.e., by results of Drinfeld it is the spectrum of a finite abelian extension
field Kx of K which is totally split at ∞. The Galois action is then simply the
action on Kx. It follows that from the cusp x, one obtains the left regular
representation

Gal(Ksep/K) −→→ Gal(Kx/K) −→→ K[Gal(Kx/K)].

After replacing the coefficient field K of K[Gal(Kx/K)] by suitable extensions,
the representation clearly has a decomposition series into one-dimensional char-
acters of finite order. We have shown:

Corollary 14.7 Let the notation be as above. Then for n > 2, the Galois
representations of Corollary 14.5 which arise from the kernel of Sn(K)→ S2

n(K)
in the four term sequence (72), are precisely the one-dimensional characters that
appear in a composition series of

Gal(Ksep/K) −−→→ Gal(Kx/K) −→ Kalg[Gal(Kx/K)]

for some x ∈ K∗B(Af )\GL2(Af )/K.
For n = 2, one needs to remove from the above list one copy of the trivial

representation for each connected component of MK,C∞ , i.e., d(K)-many such
copies.

As pointed out in Remark 12.9, we hope that the corresponding eigenforms can
be given explicitly by using Poincaré series. Also, if desired, one can make the
extensions Kx of K totally explicit, so that one has a precise description of the
Galois representations which occur.

On the other hand, the examples in the following section suggest that the
one-dimensional representations that arise from double cusp forms are typically
not of finite order. However there is clearly one exception, as can be seen from
the following result, which is also implicitly contained in [17].

Theorem 14.8 There is a canonical isomorphism

S2
2(K) ∼= (P ét

τ R1
étḡK∗1l

ét
MK,k

)⊗k A,

where P ét
τ is as in Theorem 7.17.

Proof: Clearly the maximal extension of FK to MK is 1lMK,A
, which in turn

is obtained from 1lMK,k
by changing coefficients from k to A. Therefore we have

S2
2(K) ∼= R1ḡK∗1lMK,k

⊗k A
Thms. 7.17 and 7.18∼= (P ét

τ R1
étḡK∗1l

ét
MK,k

)⊗k A,

because any étale sheaf on SpecK is locally constant. The assertion follows.
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15 An example

Throughout, we fix A = k[T ] and let K = K(n) for the level n = (T ). So we
are in the same set-up as in Example 6.13. In this case ClK is trivial. In the
sequel we want to compute the moduli space of Drinfeld-modules with a level
T -structure. A good general reference for such computations is [46].

The calculations below are joint work with R. Pink.

Say we want 1 and s as a basis of T -torsion points of the Drinfeld-module
given by ϕT (x) = a0x + a1x

q + a2x
q2 . The fact that all k-linear combinations

of 1, s will be roots of the above polynomial means that we have∣∣∣∣∣∣
x xq xq

2

s sq sq
2

1 1 1

∣∣∣∣∣∣ c = ϕT (x)

for some unit c. Because a0 = θ, we must have c = θ/ det
(
sq sq2

1 1

)
. This yields

ϕT (x) = θ
(
x+

sq
2 − s

sq − sq2
xq +

s− sq

sq − sq2
xq

2
)
.

It follows that MK is the spectrum of the ring R′ = k[θ±1, s, (s− sq)−1].
The associated τ -module is given as R′{τ} where the generator T of A acts

via ϕT . Therefore the elements 1, τ form a basis of R′{τ} over R′[T ]. If we set
u = s− sq, then the morphism τ is given by

τ =
(

0 T−a0
a2

1 −a1
a2

)
(σ × id) =

(
0
(
T
θ − 1

)
u1−q

1 1 + u1−q

)
(σ × id).

We define R := k[θ±1, u±1]. This parametrizes the moduli scheme for rank two
Drinfeld-modules with a level K′-structure, where K′ ⊃ K and the T -component
of K′ is given by {

(
a b
c d

)
∈ GL2(A(T )) : a, d, 1+ c ≡ 1 (mod T )}. In particular

one of the T -torsion points, namely 1, is fixed for the moduli problem. The
coordinate u gives a monic equation of degree q for the second torsion point s.

From now on, we only work over Y = SpecR and our τ -sheaf F is given by
(O2

X×SpecA, τ), where τ is as above. Because we have a level T -structure, we
consider Y as a scheme over X := SpecA((θ)) = Spec k[θ, θ−1]. In terms of u,
the universal Drinfeld-module is given by ϕT = θ

(
1 + (−1− u1−q)τ + u1−qτ2

)
.

Clearly for u→∞, we have a cusp and the module degenerates to a module of
rank 1. After applying the isogeny u ∈ R∗, it is easy to see, that u→ 0 is also
a cusp. Drinfeld’s compactification is now Ȳ := P1

Spec k[θ±1]. Let ḡ : Ȳ → X be
the structure morphism.

Set F := OȲ×SpecA(−∞)2. One verifies that τ extends to this sheaf and
furthermore that τ has the following specializations:

τ =
(

0 0
1 1

)
(σ × id) at u = 0

τ = u
(

0 (T/θ−1)uq−1

1 uq−1

)
u−q

∣∣∣
u=∞

(σ × id) =
(

0 T/θ−1
0 1

)
(σ × id) at u =∞.

In both cases, the non-nilpotent part has rank 1. Therefore the τ -sheaf F :=
(OȲ×SpecA(−∞), τ) is the maximal extension of F .

Proposition 15.1 The crystal of Drinfeld modular double cusp forms for K′ is
given by S2

n+2(K′) := R1ḡ∗ Symn F .
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Because the underlying sheaf of F is of pullback type, it follows that the
τ -sheaf S2

n+2(K′) is free over Spec k[θ±1] of rank dimkH
1(P1,O(−n∞)n+1) =

n2 − 1. On the other hand, the expected rank of a good representative of the
crystal S2

n(K′), is given by

s2n(K′) =
{

g(ȲK) = 0 if n = 2
(n− 2)(g(ȲK) + h(ȲK)) + g(ȲK)− 1 = (n− 2)− 1 if n > 2

In particular, for n < 4, the crystal S2
n(K′) is zero.

Define α(n) as the n-th symmetric power of the matrix α :=
(

0 b
1 c

)
:=(

0 (T/θ−1)uq−1

1 uq−1

)
. Then α(n) is given by



0 0 0 . . . 0 bn

0 0 0 . . . bn−1
(
n
n−1

)
bn−1c

...
...

...
. . .

...
...

0 0 b2 . . .
(
n−1

2

)
b2cn−3

(
n
2

)
b2cn−2

0 b 2bc . . .
(
n−1

1

)
bcn−2

(
n
1

)
b1cn−1

1 c c2 . . .
(
n−1

0

)
cn−1

(
n
0

)
cn


For the actual computation of S2

n+2(K′), let m = (q−1)(n−1)−1 and consider
the following diagram for n ≥ 2

0 // OȲ×A(−n∞)n+1

σ

��

// OȲ×A(−∞)n+1 //

σ

��

OȲ×A(−∞)n+1

OȲ×A(−n∞)n+1
//

τ

��

0

OȲ×A(−qn∞)n+1

α(n)

��

// OȲ×A(−q∞)n+1

α(n)

��
0 // OȲ×A(−n∞)n+1 // OȲ×A(m∞)n+1 // OȲ×A(m∞)n+1

OȲ×A(−n∞)n+1
// 0.

Applying the long exact sequence of cohomology yields a commutative diagram

OȲ×A(−∞)n+1

OȲ×A(−n∞)n+1

∼= //

τ

��

R1ḡ∗OȲ×A(−n∞)n+1

R1ḡ∗(τ)

��
OȲ×A(m∞)n+1

OȲ×A(−n∞)n+1
// R1ḡ∗OȲ×A(−n∞)n+1 // 0

As a basis of OȲ×A(−∞)

OȲ×A(−n∞) over k[θ±1] we take u−(n−1), . . . , u−1. The standard

basis of the free module On+1
Ȳ×A we denote by v1, . . . , vn+1. Then a basis of the

top left term is given by

{u−ivj : i ∈ {1, . . . , n− 1}, j ∈ {1, . . . , n+ 1}}.

Let us now compute S2
n(K′) explicitly in the simplest non-trivial case, i.e.,

for n = 4. Then our basis is {u−1vi : i = 1, 2, 3}. The image τ(u−1vi) is the
residue with respect to u of the i-th column in α(2)(σ × id)u−1. Hence the
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images are the columns in

Resu

 0 0 b2

0 b 2bc
1 c c2

u−q

= Resu

 0 0 (T/θ − 1)2uq−2

0 (T/θ − 1)u−1 2(T/θ − 1)u−1(1 + uq−1)
1 u−q + u−1 u−q(1 + uq−1)2


=

 0 0 0
0 (T/θ − 1) 2(T/θ − 1)
0 1 2

 .

On the subcrystal generated by v1 and 2v2 − v3, the map τ is zero. A basis of
the quotient is given by the image v̄2 of v2, which is mapped to

(0, T/θ − 1, 1)t (mod 〈v1, 2v2 − v3〉) = (T/θ + 1)v̄2,

where vt is the transpose of a vector v. Thus we have shown:

Proposition 15.2 S2
4(K′) ∼= (OX×SpecA, (T/θ + 1)(σ × id)).

Using similar, but more sophisticated calculations, one can show the follow-
ing:

Proposition 15.3 a) If q ≥ n ≥ 2, then

S2
n+2(K′) ∼=

n−1⊕
j=1

(
OX×SpecA,

n∑
µ=0

(
µ

j

)(
j

n− µ

)
(T/θ − 1)n−µ(σ × id)

)
.

b) For q = 2, one has

S2
5(K′) ∼=

(
O2
X×SpecA,

(
1 T/θ

T 2/θ 1

)
(σ × id)

)
.

c) For q = 3, one has

S2
6(K′) ∼=

(
O2
X×SpecA,

(
1 T/θ

T 3/θ 1

)
(σ× id)

)
⊕ (OX×SpecA, (T/θ− 1)2(σ× id)).

Example 15.4 The following shows that no näıve multiplicity one theorem can
hold for doubly cuspidal Drinfeld modular forms. For q > 2 part a) above implies
that S2

5(K′) ∼= (OX×SpecA, (2T/θ+1)(σ× id))2. Since the Hecke action on cusp
forms is determined by the Galois representation which in turn is completely
determined by the simple pieces of S2

n(K′), there exist two linearly independent
doubly cuspidal Hecke eigenforms for K′ which have the same systems of Hecke
eigenvalues.

Consider the direct sum decomposition of S2
n+2(K′) in Proposition 15.3 a).

The degree in T of the polynomial
∑n
µ=0

(
µ
j

)(
j

n−µ
)
(T/θ − 1)n−µ is given by

min{j, n − j}. This degree can be thought of as the weight of the crystal at
T =∞. On the other hand, the weight of Symn F at∞ is given by n/2. Because
for all but at most one j one has min{j, n− 2− j} < n/2, we have shown:

Corollary 15.5 Weights are not preserved under R1ḡ∗.
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Let us now compute the Hecke eigenvalues of the crystal S2
4(K′), using the

Eichler-Shimura relation, Theorem 13.10. Let p(θ) be an irreducible polynomial
in k[θ] which is prime to θ, say of degree d, and which satisfies p(0) = 1. If θ′

in kalg is a root of p, then we have

p(θ) = (1− θ

θ′
)(1− θ

θ′q
) . . . (1− θ

θ′q
d−1 ).

Let f be a non-zero double cusp form of weight 4 for K′. The space of all such
is one-dimensional, because S2

4(K′) is representable by a rank 1 τ -sheaf with
injective τ , and thus f must be a Hecke eigenform.

To compute its Hecke eigenvalue a(p), following the recipe given in Theo-
rem 13.10 one needs to compute the action of τd on the reduction of S2

4(K′) at
(p). We have

τd = (1 + T/θ)(1 + T/θq) . . . (1 + T/θq
d−1

)(σd × id).

In k[θ]/(p(θ)) ⊗k k[T ], this becomes p(−T ) ∈ k[θ]/(p(θ)) ⊗k k[T ]. We have
shown:

Proposition 15.6 Let p ∈ k[T ] be irreducible and normalized such that p(0) =
1. Then for all f ∈ S(K′) one has

T(p)f = p(−T )f,

where p(−T ) ∈ C∞ via ιC∞ : k[T ]→ C∞.

Example 15.7 Let us conclude by computing the Hecke action on the quotients
of the cusp forms by the double cusp forms. The crystal to consider on Ȳ is
the unit crystal 1l({0}×SpecA)×SpecA,A ⊕ 1l({∞}×SpecA)×SpecA,A, supported on
the cusps. If we compute the pushforward under Ȳ → X, this simply yields
the crystal 1l2SpecA,A. A trivial calculation shows that all Hecke eigenvalues are
identically one for the Hecke operators T(p).

Let us compare this result with the computation of the Hecke eigenvalues
of the Poincaré series Pq+1,1 ∈ Sq+1,1(GL2(Â)) in [16]. There it was shown
that T ′pPq+1,1 = p′pPq+1,1 for all primes p, where T ′p and p′p are as in Exam-
ple 6.13. Because Pq+1,1 is not doubly cuspidal, by the above computation its
associated crystal must be the unit crystal, and hence via the Eichler-Shimura
correspondence we must have TpPq+1,1 = Pq+1,1. This is consistent with the
computations in Example 6.13, which assert that T ′p = p′pTp.
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Index of notation

(Rn[[π]]⊗A)A-an, 131
(M, charM), 81
(ϕ,ψ, λ), 18
(ϕ̂, ψ̂, λ̂), 22
(fν), 59
A, A(n), Â, 11
Ai, 164
B, 86
B(R), 21
BX, 99
C, ∞, V (n), 11
Char
n,l (Γ, R), 50

Cx,m, 35
D∗, 34
F ∗G, 68
Fn,l(Γ), 48
Iw, 60
K, 11
Kv, πv, kv, Av, dv, qv, 11
Lalg, Lsep, 11
Mn,l(Γ), 49
P ∗, 50
Q(R), 22
R in § 11.2, 131
R(K,Y), 70
R{τ}, degτ , 11
Rif∗, 82
Rif∗G̃, 91
Rif∗ψ, 91
Rif!, 83, 96
Rµ,ν(K), 70
S2
n,l(Γ), 49
Sm, Sm(K), 70
St(α), 35
Sn,l(Γ), 49
Tm, Tm(K), 70
VK(n), 21
Vn,l(Λ⊗R), 50
Wt, 31
X, Y , 11
X⊗̂Ap, 141
Xrig, 86
[s], 33
[ψ], 14
AfA, AA, 11
Y, 33
A, 100
B, 86
DA, 100
H(K,Y), 69
HK, 68
HKp , 68

IF̃ , 90
Krn, 13
K0(n), 69
K1(n), 69
Kp, 68
Kp(n), 69
K0,p(n), 69
K1,p(n), 69
Mr
K, 14

Mr
n, 13

Mr,rig, 40
Mr,rig

n , 42
N , 24
NK1,n2 , 18
Qn, 130
Rn, 130
T , T0, T1, 28
T st

0 , 51
T st

1 , 51
T o, T o1 , 28
T o,st1 , 51
TK, 64
T∞, 34
Tν , 64
Ts, 38
Y, 69
Yp, 69
ClK, 44
Cohτ (X,B), 80
C̃ohτ (X, B), 100
C̃ohτ (X,B), 86
C̃oh e

τ (U,B), 92
Cohf

τ (X,Ap), 141
Crys(X,B), 80
C̃rys(X,B), 87
C̃ryse(U,B), 93∣∣∣∣
n,l

, 60
∆x, 33
A, 100
B, 86
DA, 100
G/S, 12
G/X, 108
Mr
K,R, Mr

n,R, 17
Mr
K, 17

Mr
n, 13

N, 24
Nr, 24
NK1,n2 , 20
N∞K1,n2

, 21
Nn1,n2 , 20
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UΓ, 35
Ut, 31
Utt′ , 34
X,Y, 86
XK, 59
b?, 11
n, deg(n), 11
Γ′s, 48
Γ\Ω, 34
Γγ , 48
Γt, 32
Γt\Ωt, 34
HomGL2(K)(Z̄, W̄ ′), 65
Λg, 43
=⇒, 81
Max(A), p, 11
Ω(C∞), 28
ΩK, 43
Ωγ , 48
Ωg, 43
Ωs, 38
ΦK, 67
ΦΓ, 52
QCohτ (X,B), 80
ResΓ, 50
Rese, 50
Res f , 62
StK, 64
StΓ, 52
Symn F , 83
Ñ, 24
ÑK1,n2 , 21
C̃har
n,l (K, R), 63

c̃, 63
ẽ, 64
t̃, 64
ṽ, 64
Fτ , 81
FA-rig, 101
F ét,v
K , 85
FK, 82
F (n),∞
K , 130
F̃(K), 104
F̃ ⊗B B′, 90
F̃A-rig, 101
F̃DA-rig, 101
F̃ ét,p, 144
G̃i, 135
M2, 133
S2
n+2(K), 153
S ét,v
n,i (K), 169
Sn+2(K), 116
Sn,i(K), 164
Mn,l(K), 59

F̃ p̄, 135
H̃, 133
M̃1, 133
M̃2, 133
1l étX,B , 84
1lKxK, 68
1̃lX,B, 89
S2
n,l(K), 59

Sn,l(K), 59
f , 59
ϕ, 12
ϕ[n], 13
s, 33
sγ , 48
ξ, 12
αΓ, 54
Z̄ ⊗GL2(K) W̄ , 65
ŪΓ, 39
ω̄Γ, 49
ḡK, 26
ḡn, 26
L, 18
MK, 18, 26
Mn, 26
S ét,v
n,i (K), 169
Sn,i(K), 164
K, 22
CSt
n (K, R), 65

Char
n,l (K, R), 62

CSt,2
n (K, R), 65

CSt,2
n (Γ,Λ⊗R), 54

CSt
n (Γ,Λ⊗R), 52

Fn,l(K), 60
Mn,l(K), 60
S2
n,l(K), 60

Sn,l(K), 60∧n F , 83
λ̌, 22
crs(ẽ), 76
degΓ, 53

// , 81
M̂, 24
N̂, 24
N̂K1,n2 , 21
ιX , 11
−→, 81
νM , 30
ωΓ, 49
⊗, 82
⊗BB′, 82
CstK,•, 66
∂K, 64
ϕ, 12
ϕ′, 23
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ϕ⊗B B′, 90
pr1, pr2, 11
ρΓ, 35
σX , σY , 11
σX, 86
σL,B, 86
σX/B , 100
σX/B, 86
σX/B, 86
src(s), 56
src(ẽ), 76
srcπ1(ẽ

′), 161
θ, ρ̃, ρ, 30
C̃stΓ,•, 53
σ̃B, 86
GS , 13, 41
ξ, 45, 59
am, 69
b, 34
cγ , 48
eΛ, 41
eλ, 22
eIs

, 37
f
∣∣∣∣
n,l
γ, 48

f∗, 82
f∗F̃ , 88
fγ , 48
g(Γ), 49
h(Γ), 49
i′K, 130
j′K, 130
j#F , 124, 141
j#F̃ , 145
j!, 83
j!F̃ , 94
jK, 26
lK, 59
lΓ, 49
m(α, β, γ), 71
p, q, k, 11
p′p, 74
pp, 74
rg∞ , 60
sn(K), 61
s2n(K), 61
sg,y, 43
t(e), 29
tν , 45
x(qi), α(qi), 11
xν , 45
yj , 71
c, 62
f , 60
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Index

A-motive on X, 81
A-scheme, 11
A∞-lattice, 28
B-crystal on X, 80
K-equivalent, 14
K-equivalence of level n-structures,

42
n-torsion scheme, 13
ϕrK, 17
π1-source, 161
ψ, 13
τ -invariants, 81
τ -sheaf, 80

coherent, 80
locally free, 81
nilpotent, 80
of pullback type, 82

τ -sheaf, A-analytic, 131
gK, 17
étale v-adic sheaf of Drinfeld cusp

forms, 116, 153

adelic
cusp form, 60
double cusp form, 60
harmonic cocycle, 62, 63
modular form, 60
modular function, 60

admissible, 16
algebraic compactification, 92
algebraic rigid morphism, 92
algebraic rigid space, 92
algebraically compactifiable, 96
arithmetic subgroup, 31

Bruhat-Tits tree, 28

coherent sheaf of BX-modules, 99
conductor, 14
course, 76
crystal

of Drinfeld cusp forms, 116
of Drinfeld double cusp forms,

153
of pullback type, 82, 90

cusp, 37
cusp form, 48

global, 59
cusps, 33

dilatation, 29
discrete A-lattice of rank r, 40
double cusp form, 48

global, 59
Drinfeld-A-module, 12
Drinfeld-Tate module, 22

Eichler-Shimura isomorphism, 116
Eichler-Shimura map, 119
end, 33

rational, 33
equivalent half lines, 33
extendible crystal, 93
extendible rigid τ -sheaf, 92
extension, 124

of rigid τ -sheaves, 145
over A/n or Ap, 141
by zero, 83
of A-analytic τ -sheaves, 131

formal τ -sheaf on X over Ap, 141
fractional almost-ideal, 35

geometric realization, 29
globally uniformizable

A-module, 111
τ -sheaf, 111
crystal, 111

good extension, 126
of rigid τ -sheaves, 146

good reduction, 126
of an A-analytic τ -sheaf, 131
of rigid τ -sheaves, 146

half line, 33
harmonic cocycle, 50
Hecke algebra, global, 68

isogeny, 12

level K-structure, 14
analytic, 42

level n-structure, 13
analytic, 41

local system of A-lattices, 40
local system, of GL2(Af )-modules,

65
locally free crystal, 81

maximal extension, 124
over A/n or Ap, 141
of A-analytic τ -sheaf, 131
of rigid τ -sheaves, 145

minimal conductor, 14
modular form, 48

global, 59
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modular function, 48
global, 59

nil-isomorphism, 80
of rigid τ -sheaves, 87

norm, 29

orientation, 29

pre-Drinfeld-Tate module, 18
proper, 37

quasi-coherent sheaf ofOX-modules,
99

reduction map, 30
relatively compact, 37
rigid τ -sheaf

change of coefficients, 90
direct image, 91
nilpotent, 87
of pullback type, 90
over B, 86
over B, 100
pullback, 88
tensor product, 89

rigid crystal, 87
direct image with compact sup-

ports, 96
extension by zero, 94
locally free, 89
of Drinfeld cusp forms, 116
of Drinfeld double cusp forms,

153

simplices, 28
stable complex for Γ, 51
stable simplex, 34
standard affinoid cover, 47
standard form of a Drinfeld-module,

12
standard oriented edge, 30
standard vertex, 30
Steinberg cycle, 52

doubly cuspidal, 54
doubly cuspidal, global, 65
global, 64

Steinberg module, 52
global, 64

target of an edge, 29
trivial rigid τ -sheaf, 111

uniformizable, 111
unit crystal, 83
unstable simplex, 34
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[56] Verdier, J.-L., Des catégories dérivées des catégories abéliennes., Aster-
isque 239, Soc. Math. France (1996).

Proceedings:

[57] Ed. Gekeler, E.-U., van der Put, M., Reversat, M. and Van Geel,J.,
Drinfeld modules, modular schemes and applications, Proceedings of the
workshop held in Alden-Biesen, September 9–14, 1996, World Scientific
Publishing Co., Inc., River Edge, NJ, 1997.

[58] Ed. Goss, D. et al., The arithmetic of function fields, Proceedings of
the workshop held at The Ohio State University, 1991, OSU Math.
Res. Inst. Publ. 2, Walter de Gruyter & Co., Berlin, 1992.

183


