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Abstract Let F be a global function field over a finite constant field and ∞ a place of F . The
ring A of functions regular away from ∞ in F is a Dedekind domain. For such A Goss defined
a ζ -function which is a continuous function from Zp to the ring of entire power series with
coefficients in the completion F∞ of F at ∞. He asks what one can say about the distribution
of the zeros of the entire function at any parameter of Zp . In the simplest case A is the
polynomial ring in one variable over a finite field. Here the question was settled completely
by J. Sheats, after previous work by J. Diaz-Vargas, B. Poonen and D. Wan: for any parameter
in Zp the zeros of the power series have pairwise different valuations and they lie in F∞.
In the present article we completely determine the distribution of zeros for the simplest case
different from polynomial rings, namely A = F2[x, y]/(y2 + y + x3 + x + 1)—this A has
class number 1, it is the affine coordinate ring of a supersingular elliptic curve and the place
∞ is F2-rational. The answer is slightly different from the above case of polynomial rings.
For arbitrary A such that ∞ is a rational place of F , we describe a pattern in the distribution
of zeros which we observed in some computational experiments. Finally, we present some
precise conjectures on the fields of rationality of these zeroes for one particular hyperelliptic
A of genus 2.

1 Introduction

The theme of this article goes back to the mid 1990’s when D. Wan, J. Diaz-Vargas, B. Poonen
and J. Sheats in [8,17,24] determined the distribution of the zeros of the Goss ζ -function for
all rational function fields over a finite field and a chosen rational point. Prior to [24], Goss
had given an interpretation of the distributions of these zeros as an analog of the classical
Riemann hypothesis, see [24, p. 198f.] or [13]. A slightly different function field Riemann
hypothesis had been formulated by Wan in [24, p. 197f.]. Since [17], no distribution of zeros

G. Böckle (B)
Interdisciplinary Center for Scientific Computing, Heidelberg University,
Im Neuenheimer feld 368, 69120, Heidelberg, Germany
e-mail: gebhard.boeckle@iwr.uni-heidelberg.de

123



836 G. Böckle

of a further function field or non-rational chosen place had been determined, see however [24,
p. 199]. Due to examples of Thakur in [21] and observations of Goss in [14] it is clear that
the results will be different from the rational case.

In the present article we go in two ways beyond the results mentioned above. First, we
completely determine for one non-rational function field of class number one and a rational
place the distribution of zeros. Except for the two zeros of smallest absolute value (which
occur for the smallest slope of the Newton polygon of the power series), the distributions are
as in the rational case. Second we did some numerical experiments. These suggest that if the
chosen place of the function field is rational, then again apart from the initial small zeros, the
distribution of zeros is regular. We also computed for one particular field and chosen place
∞, experimentally, the fields of definition of the roots as an extension of the completion F∞
of the function field at ∞. This gives strong evidence that the compositum of these fields in
a fixed algebraic closure of F∞, for all parameters in Zp at once, is of infinite degree over
F∞. This is strikingly different from the case of rational function fields and the usual chosen
place ∞; here Sheats’ results (and the method of Newton polygons) imply that all roots lie
in F∞. The question about the degrees of these splitting fields was raised in [13, Conj. 4];
see also Remark 8.1.

To describe the contents of this article in greater detail let us introduce some notation. We
fix a prime number p, denote by q a power pe of p and write Fq for a field of q elements.
By F we denote a global function field with Fq as its field of constants. By X we denote the
smooth projective curve over Fq with function field F and we write g = gF = gX for its
genus. We fix a place ∞ of F and then define A as the ring of functions in F regular outside
∞, so that X = Spec A ∪ {∞}, set-theoretically.

Assumption 1.1 Throughout this article, we assume that ∞ is Fq -rational.

We shall say nothing in cases when the hypothesis of Assumption 1.1 is not met. The com-
pletion of F at ∞ will be F∞. We fix a uniformizer π∞ of F∞ and write O∞ for its ring
of integers. The uniformizer π∞ defines a sign-homomorphism sgn : F∗∞ −→ F

∗
q , which is

defined by the rule that it sends a product πn∞u with n ∈ Z and u ∈ O∗∞ to u (mod π∞) ∈ F
∗
q

(since ∞ is Fq -rational, Fq is naturally isomorphic to the residue field at ∞). The sign homo-
morphism allows one to define A+ := {a ∈ A � {0} | sgn(a) = 1} as the set of positive
elements of A. For any d ∈ N0 we set A+,d := {a ∈ A+ | deg(a) = d} where deg(a) ∈ N0

is defined so that qdeg(a) = #A/(a). Note that for F = Fq(t), π∞ = 1/t (and ∞ the
place at which π∞ vanishes) the set A+,d consists of all monic polynomials in Fq [t] of
degree d . Finally for n ∈ N with base q expansion n = a0 + a1q + · · · + a�q� we define
digq(n) := a0 + · · · + a� as the sum of its digits in base q expansion.

Following [21], we define for any n ∈ Z the power series

ζA(n, T ) :=
∑

d∈N0

T d

⎛

⎝
∑

a∈A+,d

a−n

⎞

⎠ ∈ 1 + T F[[T ]].

In the terminology of Goss [12, Ch. 8] this is the ζ -function for the principal (positively
generated) ideals of A. In [21] one finds that the sum SA(−n, d) := ∑

a∈A+,d
an is zero

whenever

n ≥ 0 and dim H0(X, OX (d∞)) − 1 >
digq(n)

q − 1
(1)

Hence for all n ≤ 0 the expression ζA(n, T ) is a polynomial.
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Goss zeta-function 837

To describe a simple improvement of the degree bound on ζA(−n, T ) derived from (1),
consider the function

d 	→ dim H0(X, OX (d∞)) − 1.

The function is obviously increasing in d of slope at most one. It takes the value zero for
d = 0. By the definition of the genus g of X the function is linear of slope 1 for d ≥ 2g. Let
h A : N → N, x 	→ max{d ∈ N | dim H0(X, OX (d∞)) − 1 ≤ x}. The function x → h A(x)

is linear of slope 1 for x ≥ g and increases from 0 to 2g − 1 for 0 ≤ x ≤ g. The estimate
derived from (1) yields degT ζT (−n, T ) ≤ h A(
(digq(n))/(q − 1)�). Taking further into
account the elementary formula ζA(n, T )p = ζA(pn, T p) which implies that the degree in
T for −n and for −pn is the same, one obtains the bound:

degT ζA(−n, T ) ≤ dA(n) := h A

(
min

i=1,...,e

⌊digq(npi )

q − 1

⌋)
(2)

which in particular yields dA(n) = O(logq(n)). If one renormalizes the ζA(n, T ) and defines

z A(n, T ) := ζA(n, T π−n∞ )

then it is quite elementary to see that the coefficients of the power series z A(n, T ) in T satisfy
congruences. Using the logarithmic degree bound in n on the ζA(−n, T ), this observation was
sharpened by Goss in [12, Ch 8] to the following result: the power series z A(n, T ), n ∈ Z,
can be interpolated to a continuous function with domain Zp and image the entire power
series in T with coefficients in F∞.

The special values z A(n, T ) being entire power series, it makes sense to ask about the
distribution of their zeros. The following result summarizes what is known due to [8,17,24]
in the case of rational function fields with ∞ the usual place:

Theorem 1.2 (Wan, Diaz-Vargas, Poonon, Sheats). Let A = Fq [t]. Then

(a) degT ζA(−n, T ) = dA(n) = mini=1,...,e
digq(npi )

q−1 �.
(b) For all n ∈ Zp, all slopes of the Newton polygon of z A(n, T ) have width 1.
(c) For all n ∈ Zp, all roots of the Newton polygon z A(n, T ) are simple and have pairwise

distinct valuations and in particular, they are all distinct and lie in F∞.

We note that part (a) is not explicitly stated in [17], but is an immediate consequence of the
computations there. We shall explain this in Sect. 7. Thinking of F∞ as the analog of the line
1
2 + iR, in [13] Goss interprets (c) as an analog of the Riemann hypothesis of the classical
Riemann ζ -function.

The main result of the present article is the following:

Theorem 1.3 Let A = F2[x, y]/(y2 + y + x3 + x + 1). Then

(a) For n = 2k and k ≥ 0, one has ζA(−n, T ) = (1 − T )2; cf. [21, §3].
(b) For any n ∈ N one has degT ζA(−n, T ) = 1 + dig2(n) = dA(n).
(c) For n = 2k1 + · · · + 2k� with 0 ≤ k1 < k2 < · · · < k� and � ≥ 1, the Newton polygon

of z A(−n, T ) has slopes 2k1 , 2k1 + 2k2 , 2k1 + 2k2 + 2k3 , . . . , 2k1 + 2k2 + · · · + 2k� ;
the smallest slope occurs with multiplicity two, all other slopes with multiplicity one. In
particular, the x-coordinates of the break points of the Newton polygon are independent
of n.

(d) Except for the two roots of smallest absolute value, all roots have pairwise different
valuations and thus lie in F∞.
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838 G. Böckle

Note that A is the coordinate ring of the affine part of a supersingular elliptic curve over F2

minus its unique F2-rational point. Moreover A has class number one, which is very useful
in the proof of the above theorem. Finally part (c) also holds for arbitrary n ∈ Z2, and infinite
2-adic expansions, by the continuity of the map n 	→ z A(n, T ).

We cannot say much in this introduction about the proof of the Theorem 1.3: It is obtained
by analyzing the action of a Cartier linear endomorphism on a dual of the A-motive attached to
certain tensor powers of the Drinfeld Hayes module for A. It builds on the work of Anderson,
Böckle and Pink, and Taguchi and Wan, cf. [2,5,19]. The proof covers Sects. 2–6. It may
well be that a combinatorial proof can also be given. To explain some ideas of the proof, we
give in Sect. 7 in a much simpler setting by similar methods a proof of a leading term formula
due to Pink and Thakur.

Following a suggestion of D. Thakur, we investigated the four roots of lowest absolute
value in the case A′ = F2[x, y]/(y2 + y + x5 + x +1). We report our findings in Sect. 8. The
computations suggest that the conductor of the splitting field of ζA′(n, T ) over F∞, which
is of degree at most 4, can be arbitrarily large; this is based on a conjectural formula for the
conductor of the splitting field above F∞ which depends on the lowest three non-zero 2-adic
digits of n only. In Sect. 8 we also comment on some patterns for the x-coordinates of the
break points of the Newton polygons of ζA(n, T ) for some rings A that arise from curves X
of small genus with a chosen rational point ∞.

2 The Drinfeld–Hayes-motive for A

For a smooth projective, geometrically irreducible curve X over the field Fq and a choice of
a closed (not necessarily Fq -rational) point ∞, Drinfeld and Hayes have explained, indepen-
dently, the existence of an integral model for a rank 1 sign-normalized Drinfeld A-module
over Spec B, where B is the normalization of the ring A in the strict Hilbert class field of
F with respect to the place ∞ – see for instance [12, Ch. 7] or [22, Ch. 3]. The number of
such modules is equal to the strict class number of A. Using Anderson’s dictionary between
Drinfeld A-modules and certain A-motives, each such Drinfeld–Hayes module defines an
A-motive on Spec B. These A-motives will be key to our approach of computing special val-
ues of the Goss L-function of (F,∞) at negative integers. Therefore we shall need a precise
description of these A-motives or at least a good understanding of the associated τ -sheaf, in
the sense of [5], on Spec B with coefficients in F , a fixed algebraic closure of F . Moreover
we shall need its maximal extension, in the sense of [9], from Spec B to the smooth projective
curve with function field the field of fractions Q(B) of B.

In the present section we determine this τ -sheaf for the particular ring

A = F2[x, y]/(y2 + y + x3 + x + 1).

It has the simplifying feature that its strict class number is one, see [15], so that B = A and
there is exactly one τ -sheaf as above.

The places of the fraction field F of A are in bijection with the non-zero prime ideals of A
together with the place ∞ of the elliptic curve E/F2 defined by A. The ring A has strict class
number one with respect to the place ∞ because ∞ is F2-rational and Cl(A) ∼= E(F2) = {∞}.
Thus the corresponding strict Hilbert class field is F itself. Its ring of integers away from
∞ is A. The general theory of Drinfeld–Hayes modules tells us that this ring of integers
is the base of a rank-1 sign-normalized Drinfeld–Hayes module and that there is a unique
such module. To distinguish the base ring from the coefficients we use bold notation, i.e., we
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Goss zeta-function 839

define

A = F2[x, y]/(y2 + y + x3 + x + 1),

and refer to Spec A as our base scheme. The Drinfeld–Hayes module for A is then the ring
homomorphism

A −→ A{τ } : f 	→ ρ f

where the expressions for ρx and ρy are given explicitly by

ρx = x + (x2 + x)τ + τ 2 ρy = y + (y2 + y)τ + x(y2 + y)τ 2 + τ 3;
see [10, p. 345].

We also consider the elliptic curve E/F2 given in homogeneous coordinates by

y2z + yz2 = x3 + xz2 + z3.

The differential ω = dy
x2+1

= dx is nowhere vanishing and a global section of the sheaf of
differentials �E/F2 . Clearly E � {∞} = Spec A and one finds

�A/F2 := 	(Spec A,�E/F2) = Adx

To pass from the Drinfeld A-module to its corresponding A-motive, we follow the
procedure described in [1, §1]: we consider P := A{τ } as a module over A ⊗F2 A =
A[x, y]/(y2 + y + x3 + x + 1) such that

(a) Elements a of A act on P via multiplication from the left by a.
(b) Elements a of A act on P via composition with ρa from the right.

This makes P into an A-A-bimodule where the action of A and A commute and thus into
an A ⊗F2 A-module. Essentially from the results in [1] it follows that P is a projective
A ⊗F2 A-module of rank 1.

We want to distinguish between the indeterminate τ in the skew-polynomial ring A{τ }
and the powers of τ as elements of P . Therefore we write 
i for the element τ i of P . The

i , i ∈ N0, form an A-basis of P . The left action by τ ∈ A{τ } on P is thus given by left
multiplication by τ on P , i.e., we have τ(a
i ) = a2
i+1. Note that we usually write 1
for 
0.

Our first aim is to describe the module P over A ⊗F2 A in various explicit ways. In a first
step we consider P over A[x] = A ⊗F2 F2[x]. Over it, the module P is free of rank 2 with
basis 1 and 
, i.e., P = A[x] ⊕ A[x]
. The endomorphism τ is given with respect to this
A[x]-basis by

τ =
(

0 x+x

1 x2+x

)
(σA ⊗ idF2[x]).

Observe that since A is factorial, so is the polynomial ring A[x] over it. We note the following
formulas for multiplication of an element a(
) ∈ A{
} by elements in A and A:

x · a(
) = (xa)(
), τ · a(
) = (τ ◦ a)(
) (3)

x · a(
) = a(τ )(x + (x2 + x)
 + 
2) (4)

y · a(
) = a(τ )(y + (y2 + y)
 + x(y2 + y)
2 + 
3) (5)
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840 G. Böckle

and thus, using the equality y2 + y = x3 + x + 1 and that we are over F2, we obtain

x · 
 = τ(x + (x2 + x)
 + 
2) = x2
 + (x4 + x2)
2 + 
3

y · 1 = y + (y2 + y)
 + x(y2 + y)
2 + 
3

xx · 1 = x(x + (x2 + x)
 + 
2) = x2 + (x3 + x2)
 + x
2

x · 
 + y · 1 + xx · 1 = y + x2 + (1 + x)


In other words, if we set α := 1 + x + x and β = y + y + x(x + x), then we have the relation

β · 1 = α 
.

To understand P as a module over A ⊗F2 A, we first give an algebraic description: since
A is geometrically irreducible over F2, the ring A ⊗F2 F is a Dedekind domain over F and
in particular S := A ⊗F2 A is an integral domain. For any non-zero elements u, v ∈ S we
denote by u

v
the fraction of u divided by v in a fixed quotient field Q(S) of S. The formula

α
 = β · 1 in P allows us to identify P with

P =
(

1,
β

α

)
:= S + S

β

α
⊂ Q(S).

Observe that β
α

is the shtuka function in [20, Ex. 2.3.(a)]. In terms of the generators 1,
β
α

of
P , the action of τ from the left is given by

τ(1) = 
 = 1 · β

α
,

τ
(β

α

)
= τ 2(1) = 
2 = x · 1 + x + (x2 + x)
 = (x + x) · 1 + (x2 + x) · β

α
.

Geometrically, Spec S = Spec A × Spec A = (E � {∞}) × (E � {∞}) is the product of
two affine elliptic curves Spec A and Spec A. The locally free sheaf L associated with the
projective S-module P is the sheaf OSpec S(D) containing the structure sheaf OSpec S and
with D the reduced subscheme of Spec S defined by

0
!= α

β
= 1 + x + x

y + y + x(x + x)
.

For any given x , the hyperplane 1 + x + x = 0 in A
4 = A

2 × A
2 intersects Spec A × Spec A

in two lines:

y = 1 + x + y and y = x + y.

The hypersurface 0 = β = y + y + x(x + x) contains y = 1 + x + y but not y = x + y
(assuming 1 + x + x = 0). We find that D is the restriction to Spec A × Spec A of the graph
of the isomorphism E → E : (x, y) 	→ (1 + x, x + y) with inverse E → E : (x, y) 	→
(1 + x, 1 + x + y). In particular the closure D ∪ {∞ × ∞} ⊂ E × E of D, which by slight
abuse of notation we denote again by D, is a divisor of degree 1 over E and over E .

For later we observe that the dual of P is P∨ = 	(Spec A × Spec A, OSpec S(−D)) =
αS + βS ⊂ S; the verification of the latter we leave to the reader. We summarize the results
on P:

Lemma 2.1 Let P := A{τ } as a module over S = A ⊗F2 A. Then P = (1,
β
α
) ⊂ Q(S) for

α = 1 + x + x and β = (y + y + x(x + x)), with

τ(1) = β

α
, and τ

(β

α

)
= (x + x) · 1 + (x2 + x) · β

α
.
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Goss zeta-function 841

Let D ⊂ E × E be the graph of the isomorphism E → E : (x, y) 	→ (1 + x, x + y) with
inverse E → E : (x, y) 	→ (1 + x, 1 + x + y). As a divisor it has degree 1 over both factors
E and E of E × E.

As a set of global sections we have

P = 	((E � {∞}) × (E � {∞}), OE×E (D))

Furthermore the dual P∨ is the submodule αS + βS of S.

Up to this point, the above analysis is very similar to that of shtuka functions of Thakur as in
[20] except that we work integrally over the base and coefficients whereas in op.cit. the base
considered was simply Spec F—or rather Spec F where F denotes an algebraic closure of F.
For us the opposite viewpoint will be important. To study special values of the ζ -function of
A at negative integers, we will require the base to be integral but may replace the coefficients
A by F , or for simplicity by F . This explains the difference in our treatment from that in
[20].

Let σE denote the absolute Frobenius endomorphism of E. For a divisor D ⊂ E × E
(or D ⊂ Spec A × Spec A), its pullback under (σE × idE )∗ is again a divisor on E × E .
In terms of composition of correspondences, one can equivalently define this pullback as
D ◦ Graph(σE)t , where for a divisor on a product of curves C ×C ′ the superscript t indicates
that we pass to its dual on C ′ × C . For D the latter shows that (σE × idE )∗ D is the dual of
the graph of σE ◦ i : E → E for i the isomorphism E → E, (x, y) 	→ (1 + x, x + y).

Set X := E × Spec F and X := Spec F × E . These are smooth projective curves over
F or F, respectively. Motivated by the notation in [20], for any n ∈ Z we define (n)D for
a divisor D on X by (n)(a, b) := (a2n

, b2n
) on closed points, and D(n) for a divisor D on

X by (a, b)(n) := (a2n
, b2n

) on closed points; note that the Frobenius endomorphism is an
automorphism on algebraically closed fields. Suppose now that a divisor on X or X arises by
base change from a divisor D on E × E (which is neither vertical or horizontal); we keep the
notation D for the base change. Then the base change of (σE × idE )∗D to X is (1)D while
that to X is 2D(−1). Note in particular that the degree of (σE × idE )∗D as a divisor on X is
the same as the degree of D on X , while over X the degree gets multiplied by the degree of
Frobenius, i.e. by 2. Abstractly this can be deduced from the fact that the divisor Graph(σE)t

has degree 2 over E and degree 1 over E .
We recall the situation from [20, 2.3(a)]: Let � ⊂ E × E denote the diagonal divisor

(called ξ in [20, 2.3(a)]); the divisor D defined by α = 0 and β �= 0 is called ξ + 1 in [20,
2.3(a)]. Following [20], we set V := OX (D) and f := β

α
. A simple calculation shows that

the divisor of f is

div( f ) = div
( y + y + x(x + x)

1 + x + x

)
= [�] + [(1) D] − [D] − [∞]; (6)

to make computations more transparent, we use [ ] in the notation for divisors, since it will
be useful to distinguish the negative sign of the group law from that on divisors, e.g., to
distinguish [−�] from −[�]—even though as classes we have −[D] ≡ [−D]. Regarding
the computation of div( f ) we note that β = 0 is satisfied for (x, y) = (x, y), (x, y) =
(1+x2, 1+x2 +y2) and (x, y) = (1+x, x +y), i.e., β vanishes on �, (1) D and −D. From
(6) we deduce the short exact sequence

0 �� (1)V (−∞)
s 	→ f ·s �� V �� O�

�� 0.

123



842 G. Böckle

Let us consider the situation over X and set V := OX(D). This means that we regard
the bold indeterminates as variables and the others as constants. The following result is
straightforward:

Lemma 2.2 The affine vanishing locus of β base changed to X (here β has degree 2) is the
divisor [�] + 2[D(−1)] + [−D]; that of α is given by [D] + [−D]. Thus for f = β

α
one has

div( f ) = [�] + 2[D(−1)] − [D] − 2[∞].
Multiplication by f occurs in the short exact sequence

0 �� (σ ×id)∗
(OX(D−2∞)

) s 	→ f ·s �� OX(D−2∞) �� O�
�� 0.

(7)

Finally there is an isomorphism (σ × id)∗OX(D − 2∞) ∼= OX(2D(−1)− 4∞).

Remark 2.3 In the notation of [5], the pair (OX(D − 2∞), s 	→ f · s) is a τ -sheaf on E over
F , i.e.,

(a) OX(D − 2∞) is a coherent sheaf on E × Spec F and
(b) s 	→ f · s is a homomorphism (σ × id)∗

(OX(D − 2∞)
) −→ OX(D − 2∞).

The underlying sheaf OX(D − 2∞) is locally free, so that it is a locally free τ -sheaf. The
τ -sheaf is a maximal extension from E�{∞} to E in the sense of Gardeyn, cf. [9, § 2], because
the morphism on ∞ is an isomorphism (and this is a sufficient condition for maximality).
Also note that (7) is defined on E over A – and even on E × E with the exception of ∞×∞.

Definition 2.4 For any divisor D on X and line bundle L = OX(D) we define L(n) :=
OX(D(n)). In particular (σ × id)∗L = (L(−1))⊗2.

We end this section by stating some computations regarding the Cartier operator on A,
leaving details for the reader to verify:

Lemma 2.5 Consider the diagram

F2[x, y]/(y2 + y + x3 + x + 1)

σ0

��

0 ��
F2[x, y]/(y2 + y + x3 + x + 1)dx

σ1

��
F2[x, y]/(y2 + y + x3 + x + 1)

d ��
F2[x, y]/(y2 + y + x3 + x + 1)dx

with σ0( f ) = f 2 and σ1(gd f ) = g2 f d f and the morphism 0 as the top horizontal arrow
and d : f 	→ d f as the bottom horizontal arrow. Then

(a) The above diagram commutes and the maps σi , i = 0, 1, are injective.
(b) One has Ker(d) = Im(σ0) and Im(d) ⊕ Im(σ1) = F2[x, y]/(y2 + y + x3 + x + 1)dx.
(c) The Cartier operator C : F2[x, y]/(y2 + y + x3 + x + 1)dx −→ F2[x, y]/(y2 + y + x3 +

x + 1)dx is the composition of the projection of F2[x, y]/(y2 + y + x3 + x + 1)dx onto
Im(σ1) with the inverse of σ1. It is completely characterized by the formulas

C(dx) = 0, C(xdx) = dx, C(ydx) = (x + 1)dx, C(xydx) = (y + 1)dx, (8)

and C( f 2g) = f C(g) for all f ∈ A and g ∈ Adx.
(d) The induced endomorphism C ⊗ id on F[x, y]/(y2 + y + x3 + x + 1)dx, which we also

denote by C is characterized by (8) and C( f 2g) = f (1)C(g) for all f ∈ A ⊗ F and
g ∈ A ⊗ Fdx.
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3 A cohomological formula for ζA(n, T ) at negative integers

Recall from Sect. 1, that for any n ∈ Z we defined the power series

ζA(n, T ) :=
∑

d≥0

T d
∑

a∈Ad,+
a−n ∈ 1 + T F[[T ]].

Its definition uses that ∞ is rational over Fq . For n ∈ N0 the value ζA(−n, T ) lies in
1 + T A[T ]. Its degree in T satisfies a logarithmic bound in n. This is at the basis of the
following important result of Goss [12, Thm. 8.9.2], in which F∞[[T ]]ent denotes the set of
entire power series over F∞, i.e., power series with coefficients in F∞ and infinite radius of
convergence:

Theorem 3.1 There exists a (unique) continuous function

L A( ) : Zp −→ F∞[[T ]]ent

such that for all n ∈ N0 the power series L A(−n) is the polynomial

L A(−n) : T 	−→ ζA(−n, T πn∞) = z A(−n, T ).

Remark 3.2 The continuity is meant with respect to the usual p-adic topology on Zp and
the Fréchet topology on L∞[[T ]]ent, which is defined so that a sequence in L∞[[T ]]ent is
convergent if it is uniformly convergent with respect to the supremum norms on all bounded
subsets of C∞, see [4, p. 765ff.].

For T sufficiently small, it is not difficult to see that the power series z A(n, T ) satisfy a uni-
form convergence condition for all n ∈ Zp . The continuity stated in Theorem 3.1, expresses
congruence conditions for the coefficients of the special value polynomials z A(n, T ) for
n ∈ −N0: if n ≡ m (mod pk) for some k ∈ N, then the coefficient of any monomial T d in

L(−n) − L(−m) is divisible by π
pk

∞ . The logarithmic growth of the special values L A(−n)

for n ∈ N, then implies that the interpolated power series are entire for all n ∈ Zp and not
just convergent on some bounded disc around zero.interpolated by {L A(−n)}n∈N0 .

Suppose now that A has strict class number one – there are exactly 4 such rings A different
from rings of the form Fq [t], see [15]. For such A there exists exactly one sign-normalized
Drinfeld A-module of rank 1. Specializing work of Anderson [2], Böckle and Pink [5] and
Böckle [4] (we use the notation as in [4, 1.40, 1.42, 4.1] or [6, Ch. 9, Ch. 10(3)]) to such A,
one obtains the following result:

Theorem 3.3 Let A have strict class number one. Let n ∈ N0. Let Hn be a locally free
τ -sheaf on X over F whose restriction to Spec A is nil-isomorphic to the n-th tensor power
of the A-motive corresponding to the sign-normalized Drinfeld A-module of rank 1. Let

L(∞, Hn, T )−1 ∈ 1 + T A[T ]
be the characteristic polynomial of the restriction of Hn to Spec(k∞ × F). Then we have:

(a) ζA(−n, T ) = L(Spec A, Hn, T ).
(b) L(X, Hn, T )L(∞, Hn, T )−1 = L(Spec A, Hn, T ).
(c) H1(X × Spec F, Hn) is a free finitely generated F-vector space which carries an action

H1(τ ) induced from the action of τ on Hn via the functoriality of cohomology.
(d) L(X, Hn, T ) = detF (1 − T H1(τ ) | H1(X × Spec F, Hn)) ∈ 1 + A[T ].
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(e) Let κ : (σ × id)∗ D(Hn) → D(Hn) denote the Cartier dual action on D(Hn) =
Hom(Hn,�X×Spec F ) induced from τ . Then 	(X × Spec F, D(Hn)) is a free finitely
generated F-vector space and for the action induced from κ on global sections,
κ : 	(X × Spec F, D(Hn)) → 	(X × Spec F, D(Hn)), one has

L(X, Hn, T ) = det
F

(1 − T κ | 	(X × Spec F, D(Hn))).

Remark 3.4 It suffices to know Hn after change of coefficients to F , i.e. the algebraic clo-
sure of F since this does not affect the values of the characteristic polynomials of τ or κ ,
respectively.

For the following result, we introduce some notation. Namely for f ∈ A ⊗ A we set f (i) :=
(σ i ⊗ id)( f ). This extends to elements in F ⊗ A or sections of OX in the obvious way. Now
Remark 2.3 together with [4, Proof of Lemma 4.7] yields:

Lemma 3.5 Let A = F2[x, y]/(y2+y+x3+x +1). Let n = ∑
j 2i j be the base 2 expansion

of n ∈ N, where the i j form a finite increasing sequence of integers. Then in the previous
theorem one can take

Hn =
⊗

j

(OX(D − 2∞), s 	→ f · s
)(i j ) =

⊗

j

(OX(D(i j ) − 2∞), s 	→ f (i j ) · s
)
.

For rational function fields, the following result which is similar to but simpler than the above
can be found in [6, §10.5, in part. Cor. 10.25].

Lemma 3.6 Let A = Fq [t]. Let n = ∑
j a j q j be the base q expansion of n ∈ N with

a j ∈ {0, 1, . . . , q − 1}. Then for
(
Hn = O

P
1
F
(−dFq [t](n)∞), s(x) 	→

∏

j

(tq j − t)a j · s(t)
)

one has

ζFq [T ](−n, T ) = (1 − T )δn det
(
1 − T κ | H0(P1

F , D(Hn))
)

where δn = 1 if q − 1 divides n, i.e., if n is q-even, and δn = 0 if n is q-odd.

4 Special values as characteristic polynomials of matrices

In Theorem 3.3 we displayed a cohomological expression for ζA at negative integers in terms
of an A-motive closely related to tensor powers of the Drinfeld–Hayes module for A. A
candidate for such an A-motive was given in Lemma 3.5 which is based on Lemma 2.2.
Combining both results, in this section we shall derive for each positive n a matrix whose
characteristic polynomials compute ζA(−n, T ).

We work over the curve X = X × Spec F . It is an elliptic curve with affine equation
y2 +y = x3 +x +1. It contains the points � = (x, y) and P = (1+ x, x + y) for x, y in the
ring A = F2[x, y]/(y2 + y + x3 + x + 1). On X we have the line bundle L = OX(D − 2∞)

and multiplication by f = β
α

on sections induces an injective homomorphism L(−1) f ·−→ L
with cokernel O�. This defines a locally free τ -sheaf on X in the sense of Remark 2.3. We
have observed in Lemma 3.5 that for a sequence i = (i1 < · · · < i�) in N and n = ∑�

j=1 2i j

the line bundle Li = L(i1) ⊗ · · · ⊗ L(i�) with the induced τ is a τ -sheaf that can be used to
compute the special polynomial ζA(−n, T ).
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The dual L∨ = OX(2∞ − D) has degree 1. For a tuple i = (i1 < · · · < i�) in N we
define

L∨
i := D(Li ) := (L(i1))∨ ⊗ · · · ⊗ (L(i�))∨ ⊗ �X = OX(2�∞ − D(i1)

−D(i2) − · · · − D(i�))dx.

It has degree �, so that Wi := H0(L∨
i ) has dimension � over F . Given a tuple i , we write Pk

for P(ik ) and �k := �(ik ). We mostly drop dx from the notation for sections of L∨
i .

Lemma 4.1 The following sets are bases of Wi :

(a) {s1, . . . , s�} where sk is the unique section of L∨
i with zeros at �1, . . . , �k−1,

�k+1, . . . , �� and with value 1 at �k .
(b) {̃s1, . . . , s̃�} where s̃k is the unique section of L∨

i with zeros at �
(1)
1 , . . . , �

(1)
k−1,

�
(1)
k+1, . . . , �

(1)
k and with value 1 at �

(1)
� .

(c) {b1, . . . , b�} where the bk are defined as follows: Observe first that 1 + xk + x vanishes
on Pk and −Pk and has a double pole at ∞. Consider next the linear form �i j =
y + mi j x + bi j . It vanishes on Pi , Pj and −Pi − Pj and has a triple pole at ∞. Writing
Pi = (1 + xi , xi + yi ) we have

�1 j = y + y1 + x1 + (x + x1 + 1)

(
y j + y1

x j + x1
+ 1

)

for j ≥ 2. Set now b1 :=
�∏

k=1
(1 + xk + x) and for 2 ≤ j ≤ �

b j :=
�∏

k=1
k �=1, j

(1 + xk + x)�1 j .

Proof The proof of (a), (b) being straightforward, we only prove part (c): The function b1

has a pole of order 2� at ∞, the functions bk with k > 1 of order 2� − 1. They have no other
poles. All these functions vanish on the points P1, . . . , P� and hence they are global sections
of Wi . Let us argue that they form a basis over F :

For any divisor D of X of degree � such that Li �∼= OX(D), the theorem of Riemann-Roch
combined with the six-term exact sequence for coherent cohomology of a curve yield an
isomorphism Wi ∼= L∨

i /DL∨
i under evaluation. It follows that evaluation for a suitable D

yields the isomorphism

eval : Wi
∼=−→ ⊕�

j=2 L∨
i /L∨

i (−[−Pj ]) ⊕ L∨
i /L∨

i (−�).

Denote by eval(bk) the row vector of length � in F whose last entry is bk(�) and whose
further entries are bk(−P2), …, bk(−P�). Then eval(b1) = (0, . . . , 0, b1(�)), eval(b2) =
(b2(−P2), 0, . . . , 0, b2(�)), eval(b3) = (0, b3(−P3), 0, . . . , 0, b3(�)), …, , eval(b�) =
(0, . . . , 0, b�(−P�), b�(�)). We claim that bk(Pk) is non-zero for all k ≥ 2. Then the row
vectors eval(bk) are linearly independent, because b1(�) �= 0, and so it follows that the
sections b1, . . . , bn form a basis.

To prove the claim recall that bk vanishes exactly at ±P2, . . . ,±Pk−1,±Pk+1, . . . ,±P�

and P1, Pk,−P1 − Pk . Suppose bk(−Pk) = 0. Since the x-coordinates of ±Pk and ±Pj are
different for k �= j – they are 1 + xk and 1 + x j –, it follows that −Pk ∈ {Pk,−Pk − P1}.
The former condition is not possible since ±Pk have the same x-coordinates but different
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y-coordinates, namely 1 + xk + yk and xk + yk . The latter leads to 0 = −P1 which is absurd
as well and hence the claim is shown. ��
Given any meromorphic function g on X such as f = α

β
, we denote for n ∈ Z by g(n) the

meromorphic section where the n-th power of the absolute Frobenius automorphism on F is
applied to the coefficients. The following assertion is clear from the description of the Cartier
operator C in [2]; see also [6, § 10.5].

Lemma 4.2 The homomorphism κ : (σ × id)∗L∨
i → L∨

i is given on sections as

s 	→ C( f (i1) f (i2) · . . . · f (i�)s)

where C is the Cartier operator on �X = OXdx which has dx
x as a fixed point, extends

uniquely to the meromorphic differentials on X and satisfies C(g2ω) = g(1)C(ω) for any
meromorphic function g and meromorphic differential ω on X.

In the following we write fk instead of f (ik ), so that div( fk) = [�k]+2[P(−1)
k ]−[Pk]−2[∞].

Lemma 4.3 For j = 1, . . . , � let

α j :=
�∏

k=1
k �= j

fk(� j ) =
�∏

k=1
k �= j

yk + y j + x j (xk + x j )

1 + x j + xk
.

Define μ as the diagonal � × �-matrix with α j as the entry at ( j, j). Then

κ(s1, . . . , s�) = (̃s1, . . . , s̃�)μ.

Proof Using the group law on X we define R j := −(P1 +· · ·+ P�+�1 +· · ·+��)+� j , so
that we have div(s j ) = [R j ]−[� j ]+∑

i ([Pi ]+[�i ]−2∞). The divisor of a meromorphic
function on the elliptic curve X has degree zero and sums as a set of points on the curve to
0. This proves the first equality in

div(s j f1 f2 . . . f�) =
�∑

k=1

([�k] + [Pk]) − [� j ] + [R j ] − 2�[∞]

+
�∑

k=1

(
[�k] + 2

[
P(−1)

k

]
− [Pk] − 2[∞]

)

= 2

(
−[∞] +

�∑

k=1

(
[�k] +

[
P(−1)

k

]
−2[∞]

))
−[� j ] + [R j ] + 2[∞].

Let t be a meromorphic section such that

div(t) = −[∞] +
�∑

k=1

(
[�k] +

[
P(−1)

k

]
− 2[∞]

)
+ [T ]

for T = −∑�
k=1(�k + P(−1)

k ) under the group law of X. Define t j := s j f1 . . . f�t−2, so
that div(t j ) = −2[T ] + [R j ] − [� j ] + 2[∞]. We claim that � j is different from R j and

from T and that the P(−1)
j are different from T .

First we explain � j �= R j . Suppose on the contrary, that the two are equal. From the
definition of R j it follows that

∑�
i=1(Pi + �i ) = 0. Noticing that Pi + �i under the group
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law is equal to −P(1)
i , and writing 
 for the Frobenius endomorphism of the elliptic curve,

it follows that −(
∑�

i=1 
ιi +1)(P) = 0. This contradicts Lemma 4.4(c) below since all
coefficients of −(

∑�
i=1 
ιi +1) are odd.

Now we explain T �= � j . The divisor of β is [�] + 2[P(−1)] − [P] − 2[∞], so that
� + P(−1) = P − P(−1) under the group law of E . The formula � + P + P(1) = 0
from the previous paragraph yields � = −P(1) − P . Therefore using the Frobenius 
, the
equality T = � j can expressed as

∑
k(


ik − 
ik−1)P = (−
i j +1 − 
i j )P . Writing this
as f (
)P = 0 for some f ∈ Z[u±1] we see that the lowest non-vanishing coefficient of f
is odd. Again this contradicts Lemma 4.4(c). The argument for P(−1)

j �= T is similar.
The point of introducing t, t j above is the following simple calculation using the Cartier

linearity of κ:

κ(s j ) = C(s j f1 . . . f�) = C(t2t j ) = t (1)C(t j ).

Now t (1) has simple zeros at all Pj and �
(1)
k —since the �k are different from T and the Pj .

Because of Sublemma 4.5 below, C(t j ) is non-zero and has a simple pole at �
(1)
j , and the

last part of Sublemma 4.5 easily yields t (1)C(t j ) ∈ 	(X, L∨
i ). Hence κ(s j ) = t (1)C(t j ) is a

non-zero multiple of s̃ j by a constant. To determine this constant we now evaluate κ(s j ) at

�
(1)
j (π j denotes a uniformizer at � j ):

(
t (1)C(t j )

)
(�

(1)
j ) = (t (1))′(�(1)

j ) · Res
�

(1)
j

C(t j )

4.5=(t ′(� j ))
(1) · Res� j (t j ) = (t ′(� j ))

2 · Res� j (t j )

= (t/π j )
2(� j ) · (π2

j t ′j )(� j ) = (t2t j )
′(� j )

= (s j f1 · . . . · f�)
′(� j ) = ( f1 · . . . · f̂ j · . . . · f�)(� j ) f ′

j (� j ) ;

the passage from line 1 to line 2 also uses the formula (t (1))′(�(1)
j ) = (t ′(� j ))

(1) which

holds since differentiation commutes with the Frobenius on F . Now, at � j = (x j , y j ) an
explicit uniformizer is given by x − x j . Computing the Taylor expansion for y − y j of the
equation for E at � j using implicit differentiation, one finds

y − y j = (1 + x j )(x + x j ) + (1 + x j + x4
j )(x + x j )

2 + O((x + x j )
4).

Substituting this expression in f j = yi +y+x(xi +x)
1+xi +x we deduce f ′

j (� j ) = 1. This in turn allows

us to evaluate (s j f1 · . . . · f̂ j · . . . · fk)x f ′
j at � j , yielding α j as the value, and thus to prove

the lemma. ��
We now state the two auxiliary results used in the proof of the previous lemma:

Lemma 4.4 For the Frobenius endomorphism 
 ∈ End(E) and f = ∑N
i=M ai ui ∈ Z[u±1]

one has

(a) The minimal polynomial of 
 is u2 −2u+2 ∈ Z[u]; it has roots 1±i in C with i = √−1.
(b) One has the equivalences: f (
)P = 0 in E(F) ⇐⇒ f (
) = 0 in End(E) ⇐⇒

f (1 − i) = 0.
(c) If aM is an odd integer, then f (1 − i) is non-zero, and so f (
)P ∈ E(F) is non-zero.

Proof For (a) recall that the minimal polynomial of the Frobenius endomorphism 
 of an
elliptic curve over a finite prime field Fp is u2 − au + p ∈ Z[u] where the value of this
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polynomial at u = 1 is the number of Fp-rational points of the curve. In the case at hand we
have #E(F2) = 1 and so a = 2 and (a) follows immediately.

To see ⇒ of the first implication of (b) note that if f (
) is non-zero, then it is an isogeny
of E. As such its kernel consists of torsion points only. But the torsion points of E are defined
over F2 while P , having coordinates (x, y), is not. This gives a contradiction. The remaining
assertions of (b) are immediate or follow from (a).

For (c) note that by multiplying from the left by a suitable power of 
, which commutes
with Z, we can assume that M = 0 so that f (1− i) lies in Z[i]. Now in the latter ring 1− i is
a generator of the maximal ideal above (2) ⊂ Z. Reduction modulo (1− i) of f (1− i) yields
the non-zero value a0 (mod 2) and thus that f is non-zero. The remaining claim follows
from (b). ��

The following result follows from [18, Exer, 4.12ff.] by composing the Cartier endomor-
phism considered there with the automorphism on EF induced by the inverse of the Frobenius
automorphism on the coefficient field F :

Sublemma 4.5 Let ω be a meromorphic differential on EF with a simple pole at P ∈ E(F).
Then

(a) C(ω) has a simple pole at P(1) and in particular it is non-zero.
(b) ResP(1)C(ω) = ResP (ω).

Moreover if ω is regular at P ∈ E(F), then C(ω) is regular at P(1).

From Lemma 4.1 we know that the s j as well as the s̃ j form a basis of Wi . Since the α j

are all non-zero the determinant of the matrix μ in Lemma 4.3 is non-zero. It follows that
the characteristic polynomial of κ on Wi has full rank. Since the pointwise L-factor of Li at
∞ is equal to 1 + T , Lemma 3.5 and Theorem 3.3 yield the following result:

Theorem 4.6 Let A = F2[x, y]/(y2 + y + x3 + x + 1). Then for n ∈ N one has

degT ζA(−n, T ) = dig2(n) + 1.

So far we have obtained a matrix representative for τ on Wi with respect to two different
bases. This allows us to deduce that κ is non-singular on Wi . But it does not allow one to
compute its characteristic polynomial, and thus the value ζA(−n, T ) for n = ∑

j 2i j . To

achieve this, we define the base change matrices ν and ν̃ in M�×�(F) of the vector space Wi

as follows:

(s1 s2 . . . s�)ν = (b1 b2 . . . b�) (̃s1 s̃2 . . . s̃�)̃ν = (b1 b2 . . . b�).

We have defined the si so that evaluated at the point � j one obtains the Kronecker symbol
δi j , and similarly for the s̃i . Thus we find

ν = (b j (�i ))i, j=1,...,� ν̃ = (b j (�
(1)
i ))i, j=1,...,�.

Here i is the row and j is the column index. The explicit expressions for the bi in Lemma 4.1
allow one to evaluate these:

Lemma 4.7 The first column of ν has entries

�∏

k=1

(1 + xk + xi )
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and that of ν̃ has the entries
∏�

k=1(1 + xk + x2
i ) for i = 1, . . . , �. Columns j = 2, . . . , � of

ν have entries

(
yi + y1 + x1 + (xi + x1 + 1)

( y j + y1

x j + x1
+ 1

)) �∏

k=1
k �=1, j

(1 + xk + xi ),

and those of ν̃ have entries
(

y2
i +y1+x1+(x2

i +x1+1)
(

y j +y1
x j +x1

+1
))∏

k=1
�
k �=1, j (1+xk +x2

i ),

for i = 1, . . . , �.

Having defined ν, ν̃ and μ, elementary linear algebra now yields:

Lemma 4.8 With respect to the basis (b1. . . . , b�) of Wi , the endomorphism κ is given by
the matrix

ν̃−1μν.

We do not know how to compute the characteristic polynomial of the matrix ν̃−1μν. However
to obtain its Newton polygon, it will be sufficient to compute the ∞-adic valuation of its
determinant. This will be the content of the following section.

5 The valuations of det(ν), det(ν̃) and det(μ)

We let the notation be as in the previous section and define the following � × �-matrices: ρ

is the diagonal matrix with entry

�∏

k=1

(1 + xk + xi )

at (i, i) and ρ̃ the diagonal matrix with entry
∏�

k=1(1 + xk + x2
i ) at (i, i). Next, ε is the

diagonal matrix with entry 1 at (1, 1) and (x1 + xi )
−1 at (i, i) for all i ≥ 2; we also define

ε̃ := ε. Finally, γ is the matrix with ci1 = 1 in the first column and

ci j = (x1 + x j )(x1 + y1 + yi ) + (1 + x1 + xi )(x1 + y1 + x j + y j )

(1 + x1 + xi )(1 + xi + x j )

for j ≥ 2 and similarly γ̃ is is obtained from γ be replacing all xi by x2
i and yi by y2

i . The
reason for introducing these matrices is that

ν = ργ ε, ν̃ = ρ̃γ̃ ε̃. (9)

Our aim will be to compute the valuations of the determinants of the above matrices at the
place ∞ of F . Since (xi , yi ) = (x, y)(ni ), we have v(xi ) = −2 · 2ni and v(yi ) = −3 · 2ni .
We leave the following elementary result as an exercise to the reader:

Lemma 5.1 The entries ci j of γ have the following valuations:

(a) For j = 1 (column 1): v(ci1) = 0.

(b) For i = 1 and j > 1 (row 1): v(c1 j ) =
{

2n j +1, if n j = n1 + 1
−2n j , if n j > n1 + 1

.

(c) For i > 1 (row ≥ 2): v(ci j ) =
⎧
⎨

⎩

2ni − 2 · 2n j , if i > j
−2 · 2n j , if i = j
−2n j , if i < j

.
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Using the above and the Leibniz formula for the determinant, it is not hard to see that the
most negative valuation among all ciα(1) · . . . ·c�α(�), for α a permutation of {1, . . . , �}, occurs
for α = id and thus it follows that

v(det(γ )) = −2 · (2n2 + · · · + 2n� ).

A very simple computation yields v(det(ε)) = −∑
i≥2 v(xi ) = ∑

i≥2 2 ·2ni = −v(det(γ )).
For ρ we find

v(det(ρ)) =
∑

i, j≥1

v(1 + xi + x j ) = 2
∑

1≤i< j≤�

v(x j ) = 2
�∑

j=1

(−2)( j − 1)2n j .

In light of (9) we have proved:

Corollary 5.2

v(det(ν)) = (−4)

�∑

j=1

( j − 1)2n j .

The same type of analysis also yields v(det(̃ν)). We simply give the relevant intermediate
results and again leave the details to the reader:

Lemma 5.3 The entries c̃i j of γ̃ have the following valuations:

(a) For j = 1 (column 1) : v(̃ci1) = 0.

(b) For j > 1 : v(̃ci j ) =
⎧
⎨

⎩

−2 · 2n j , if n j = ni + 1 (and thus j > i)
−2n j , if n j > ni + 1 (and thus j > i)
2(2ni − 2n j ), if i ≥ j

.

One computes v(det(γ̃ )) by the same argument as v(det(γ )) to

v(det(γ̃ )) =
∑

i≥2

−2ni +
∑

i≥2,ni−1+1=ni

−2ni ,

where this time the optimal permutation is the cyclic permutation (1 2 3 . . . n) in cycle
representation. Note that ε̃ = ε, so that v(det(̃ε)) = ∑

i≥2 2 . . . 2n
i . Finally one has

v(det(ρ̃)) =
�∑

i=1

(−4)i2ni +
�∑

j=2,n j−1<n j −1

(−2)2n j +
�∑

j=3

(−2)( j − 2)2n j .

Thus

Corollary 5.4

v(det(̃ν)) = −2 · 2n1 −
�∑

i=1

(6i − 4)2ni −
∑

i≥2,ni −1>ni−1

2ni .

A similar argument shows for μ from Lemma 4.3 that

v(det(μ)) = −
k∑

j=1

(3 j + 1)2n j +
�∑

k=2,nk−1=nk−1

2nk . (10)

From Lemma 4.8 and the above values for the valuations of det(ν), det(̃ν) and det(μ), we
obtain the valuation of det(κ). Since we have det(1− T κ) = (1+ T )ζA(−n, T ), we deduce:
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Theorem 5.5 The valuation of the leading term of ζA(−n, T ) is

v(det κ) = −
k∑

j=2

j · 2n j .

6 The Newton polygon of ζA(−n, T )

Using the congruence properties of the functions z A(−n, T ) and the valuation of its leading
term, in this section we shall recursively deduce a formula for the Newton polygon for
z A(−n, T ) for all n ∈ Zp . This is the main result of the present article.

We take π∞ := x
y ∈ F as a uniformizer at ∞ and recall that z A(−n, T ) := ζA(−n, T πn∞).

Lemma 6.1 (Goss). The polynomials z A(−n, T ) lie in O∞[T ] for n ∈ N0. If n, n′ ∈ N

satisfy n ≡ n′ (mod 2k), then z A(n, T ) ≡ z A(n′, T ) (mod π2k

∞ ).

Proof From its definition, we deduce

z A(−n, T ) =
∏

a∈Ad,+ irred

(
1 − (T πn∞)deg aan

)−1 =
∏

a∈Ad,+ irred

(
1 − T deg a(π

deg a∞ a)n
)−1

.

The first thing to note is that π
deg a∞ a lies in O∗∞ and hence so does z A(−n, T ). Next observe

that πdeg a∞ a must be a 1-unit, since the residue field of O∞ is F2. In particular (π
deg a∞ a)2k ≡ 1

(mod π2k

∞ ). Therefore if n′ = n + 2km, then

1−T deg a(aπ
deg a∞ )n′ =1−T deg a(aπ

deg a∞ )n(aπ
deg a∞ )2k m ≡1−T deg a(aπ

deg a∞ )n (mod π2k

∞ ).

The congruence property is immediate. ��
For any n ∈ N0 with base 2 expansion n = ∑�

i=1 2ni for a strictly increasing sequence of
ni ∈ N, we name the coefficients of z A(−n, T ))/(1 + T πn∞) and ζA(−n, T )/(1 + T ) by

z A(−n, T )/(1 + T πn∞) =:
�∑

i=0

ai,nT i ζA(−n, T )/(1 + T ) =:
�∑

i=0

ãi,nT i ;

note that by Theorem 4.6 the degree in T of both polynomials is equal to �. Note also that
ãi,n = ai,nπni∞. Obviously z A(−n, T )/(1 + T πn∞) satisfies the same congruence condition
as z A(−n, T ).

Theorem 6.2 One has a0,n = 1, a1,n = πn∞ and for 2 ≤ i ≤ �:

v(ai,n) = 2ni−1 + 2 · 2ni−2 + 3 · 2ni−3 + . . . + (i − 2) · 2n2 + i2n1 =
i−1∑

j=1

(i − j)2n j + 2n1

Proof The constant coefficient of ζA(−n, T ) is 1, and the coefficient of T 1 is zero (because
A+,1 = ∅). We immediately deduce the formulas a0,n = 1, a1,n = πn∞. Next, from Theo-
rem 5.5 we deduce

v(a�,n) = v(det(κ)) + � · n = � ·
⎛

⎝
�∑

j=1

2n j

⎞

⎠ −
�∑

j=2

j2n j = 2n1 +
�−1∑

j=1

(� − j)2n j .
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In particular this completes the proof for � = 1 and so from now on, we assume � ≥ 2
and proceed by induction on n. Let us first observe that for any n′ = ∑�′

i=1 2n′
i with strictly

increasing n′
i and �′ ≥ 2 we have

v(a�′,n′) ≤ n′ − (�′ − 1)2n′
1 ,

as follows from

v(a�′,n′) = 2n′
�′−1 + 2n′

�′−2 + · · · + 2n′
1

+ 2n′
�′−2 + · · · + 2n′

1

. . .

+ 2n′
1

+ 2n′
1

≤ (2n′
�′ − 2n′

1) + · · · + (2n′
2 − 2n′

1) + (2n′
1 − 2n′

1) + 2n′
1

≤ 2n′
�′ + · · · + 2n′

1 − 2n′
1(�′ − 1) = n′ − (�′ − 1)2n′

1 .

Let now n′ = ∑�′
j=1 2n j for some 1 ≤ �′ < �, so that v(a�′,n′) ≤ n′ − (�′ − 1)2n1 < n′.

Lemma 6.1 gives

z A(n, T ) ≡ z A(n′, T ) (mod π2n′
�
+1

∞ ).

Since n′ < 2n′
�+1, we deduce v(a�′,n) = v(a�′,n′)

ind. hyp.= 2n1 +∑�′−1
j=1 (�′− j)2n j , completing

the proof. ��
We note the following immediate consequence of the above theorem:

Corollary 6.3 The slopes of the Newton polygon of z A(−n, T ) are, in increasing order:

2n1 , 2n1 , 2n1 + 2n2 , 2n1 + 2n2 + 2n3 , . . . , 2n1 + 2n2 + · · · + 2n�−1 .

In particular, apart from the first slope, all slopes occur with multiplicity 1.

Using the interpolation property of Lemma 6.1, we deduce

Corollary 6.4 Let n be in Zp. The slopes of the Newton polygon of z A(n, T ), except for
the lowest one, all have width 1. In particular, except for those of lowest order, all roots of
z A(n, T ) are simple, have pairwise different valuation and lie in F2((π∞)).

7 Two results on ζFq [t](−n, T )

In this section we prove two results on ζFq [t](−n, T ): the first result is a closed formula for
the leading term of ζFp[t](−n, T ) for n whose only digits in base p expansion are 0 and
p − 1. Such a formula was first suggested for p = 2 by some computer experiments of the
author, then proved and made precise for p = 2 and all n by R. Pink and then generalized
to arbitrary p by D. Thakur. The method is the same as the one to obtain the main results
of the earlier part of the article. We hope that the simplicity of the situation to which we
apply these methods will make the proof given in the previous sections more transparent.
The second result is the determination of the degree of ζFq [t](−n, T ) given in Theorem 1.2(a)
for arbitrary n ∈ N and prime powers q by a careful analysis of the results of Sheats in [17].
For computational results in this direction, see [3]
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7.1 A closed formula for the leading term of ζFp[t](−n, T ) for certain n

Recall from Lemma 3.6 that we have

ζFp[T ](−n, T ) = (1 − T )δn det
(
1 − T κ | H0(P1

F , D(Hn))
)

for

Hn = O
P

1
F
(−dFp[t](n)[∞]), s(t) 	→

∏

j

(t p j − t)a j · s(t)
)

where D( ) denotes the dual Hom
P

1
F
( ,�

P
1
F /F ) and κ the Cartier linear endomorphism on

this sheaf. Using �
P

1
F /F = O

P
1
F
(−2)dt and the well-known formula for the Cartier operator

C on function fields, i.e.,

C

(
tn dt

t

)
= tn/q dt

t
(11)

where tn/q = 0 if q does not divide n, one finds

(D(Hn), κ) =
⎛

⎝O
P

1
F
(dFp[t](n)[∞] − 2), s(t) 	→ C

⎛

⎝
∏

j

(t p j − t)a j · s(t)

⎞

⎠

⎞

⎠ .

It is not hard to see that if we define (Fn, κ) as the pair
⎛

⎝O
P

1
F
(dFp[t](n)[∞] − 1), s(t) 	→ C

⎛

⎝
∏

j

(t p j − t)a j · s(t)

⎞

⎠

⎞

⎠ ,

then for any q-even n one has

ζFp[T ](−n, T ) = det
(
1 − T κ | H0(P1

F , Fn)
)
. (12)

We will use (12) to obtain a proof of the following leading term formula:

Proposition 7.1 (Pink ([16], p = 2), Thakur ([23, Sec. 11], general p)). For n = (p −
1)
(

pk1 + · · · + pk�
)

with 0 ≤ k1 < · · · < k�, the degree of ζFp (−n, T ) is � and the leading
term is

∏

1≤i< j≤m

(
t pk j − t pki

)p−1
.

Proof In the case at hand we have dFp (n) = �. We consider the following three bases of
W := H0(P1

F , Fn):

(a) B0 := (1, t, . . . , t�−1)dt.
(b) B1 := (b1, . . . , b�)dt for b j = ∏

i=1,...,�,i �= j (t
pki − t).

(c) B2 := (̃b1, . . . , b̃�)dt for b̃ j = ∏
i=1,...,�,i �= j (t

pki +1 − t) = b(1)
j .

Observe first that κ(b j dt) = b̃ j dt for j = 1, . . . , � (this shows in particular that κ is an
automorphism!):
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κ(b j dt) = C

⎛

⎝
∏

i=1,...,�

(t pki − t)p−1 ·
∏

i=1,...,�,i �= j

(t pki − t)dt

⎞

⎠

= C

⎛

⎝(t pk j − t)p−1 ·
∏

i=1,...,�,i �= j

(t pki +1 − t p)dt

⎞

⎠

=
∏

i=1,...,�,i �= j

(t pki +1 − t) · C
(
(t pk j − t)p−1dt

) (11)= b̃ j dt.

Next define the change of bases matrix ν ∈ GLn(F) from B1 to B0 by

(1, t, . . . , t�−1)dt = (b1, . . . , b�)dt · ν

where the tuples are considered as row vectors. Define analogously ν̃ for the change of basis
from B2 to B0. By evaluating the defining relation for ν successively at t = t pki

, i = 1, . . . , �,
one obtains for the matrix coefficients ai j of ν the conditions:

∏

j=1,...,�,i �= j

(t pk j − t pki
) · row i of ν =

(
1, t pki

, . . . ,
(
t pki )�−1

)

Using the formula for the van der Monde determinant, it follows that

det(ν)
∏

i, j=1,...,,�;i �= j

(t pk j − t pki
) =

∏

1≤i< j≤�

(t pk j − t pki
)

and thus det(ν) = ∏
1≤i< j≤�(t

pki −t pk j
)−1. By the same line of reasoning one finds det(̃ν) =

det(ν)(1). Finally using that ν and ν̃ are change of bases matrices, for κ we find that κ with
respect to the basis B0 is represented by (̃ν)−1ν. It follows that det(κ) is the expression given
in the proposition. ��
7.2 The degree of ζFq [t](−n, T ) for n ∈ N

Fix A = Fq [t] with q = pe for the remainder of this section. We recall some notation from
[17]: a valid composition of n ∈ N of length d is a tuple r = (r1, . . . , rd) ∈ N

d of positive
non-zero integers such that

(a) n = ∑d
i=1 ri ,

(b) when summing n = ∑d
i=1 ri as integers in base p expansion, there are no carry over

digits and
(c) for i = 1, . . . , d − 1 the integer ri is a positive multiple of q − 1.

The set of all such compositions is denoted by Vd(n). Note that if r is a valid composition,
then the same is true for (r1, . . . , ri−1, ri + ri+1, ri+2, . . . , rd) for any i ∈ 1, . . . , d − 1.

Recall that SA(n, d) was defined as the sum
∑

a∈A+,d
a−n . From [17, Thm. 1.4] one

deduces:

Theorem 7.2 (Sheats). SA(−n, d) �= 0 if and only if either

(a) (q − 1)|n and Vd(n) �= ∅ or
(b) (q − 1)� | n and Vd+1(n) �= ∅.
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Following Sheats, we define 	 : N0 −→ N
e
0 as the function which maps n ∈ N0 with base

p expansion

n =
∑

i≥0

ai pi ,

so that 0 ≤ ai ≤ p − 1, to the column vector (u0, . . . , ue−1)
t where

u j =
∑

i≡ j (mod e)

ai . (13)

We consider the indices 0, 1, . . . , e − 1 of (u0, . . . , ue−1) as elements in Z/(e). Define as in
[17]

Id := {	(n) | n ∈ N and Vd(n) �= 0}.
From [17, Lem. 3.5, and (4.1)] one easily deduces that1

Vd(n) �= 0 ⇐⇒ 	(n) ∈ Id . (14)

In particular, the non-vanishing of Vd(n) only depends on 	(n).
We next recall a simple direct characterization of Id due to Sheats: regard Z

e as a space
of column vectors over Z and denote by f1, . . . , fe its standard basis. Define R as the e × e-
Matrix whose columns are the vectors fe, f1, . . . , fe−1, in this order, and set E := −1e + R
where 1e is the unit for matrix multiplication in Me×e(Z). A simple computation shows that

E−1 = −1

q − 1
(1 + pR + p2 R2 + · · · + pe−1 Re−1).

We restate [17, Prop. 4.3]:

Proposition 7.3

Id = {Ex ∈ N
e
0 | x = (x1, . . . , xe) ∈ E−1

Z
e ⊂ Q

e such that d − 1 < min{x0, . . . , xe−1}}.
To make the above proposition more explicit, we shall now derive an explicit expression

for E−1	(n): let (u0, . . . , ue−1) be as in (13). Then

E−1	(n) = 1

q − 1

( e−1∑

i=0

pi Ri (u0, . . . , ue−1)
t
)

= 1

q − 1

(
p0(u0, . . . , ue−1)

t + p1(u1, u2, . . . , ue−1, u0)
t + . . .

+pe−1(ue−1, u0, . . . , ue−2)
)t

= 1

q − 1

( e−1∑

i=0

pi ui ,

e−1∑

i=0

pi ui−1, . . . ,

e−1∑

i=0

pi ui−e+1

)t

= 1

q − 1

(
digq(n), digq(pn), . . . , digq(pe−1n)

)t
.

1 For the convenience of the reader we indicate a proof of the non-trivial direction ⇐ using the notation from
[17]: Suppose 	(n) = 	(n′) for some n′ ∈ N with Vd (n′) �= ∅. Then n′ has a valid composition (r1, . . . , rd ).
Define B as the matrix with columns 	(ri ), i = 1, . . . , d. From property (ii) of a valid composition one
deduces that the columns of B sum to 	(n′) = 	(n). Moreover 	(ri ) lies in J for i = 1, . . . , d − 1. Now
[17, Lem. 3.5] yields Vd (n) ⊃ V B

d (n) �= ∅.
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And thus we have

min E−1	(n) = 1

q − 1

(
min

i=0,...,e−1
digq(pi n)

)
and dFq [t](n) = 
min E−1	(n)�.

We note a simple consequence: It is well-known and a simple exercise that q − 1 divides n
if and only if q − 1 divides digq(n). It follows that

(q − 1)|n if and only if min E−1	(n) is an integer.

Proof of Theorem 1.2(a) We break up the computation of degT ζFq [t](−n, T ) into two cases:

Case (q − 1)� | n: Then min E−1	(n) is not an integer and so d < min E−1	(n) is
equivalent to d ≤ 
min E−1	(n)�. We deduce

degT ζFq
(−n, T )

T hm. 7.2= max{d ∈ N0 | Vd+1(n) �= ∅} (14)= max{d ∈ N0 | 	(n) ∈ Id+1}
Prop. 7.3= max{d ∈N0 | d < min E−1	(n)}=
min E−1	(n)�=dFq [t](n).

Case (q − 1)|n: Then min E−1	(n) is an integer and now we deduce

degT ζFq (−n, T )
T hm. 7.2= max{d ∈ N0 | Vd(n) �= ∅} (14)= max{d ∈ N0 | 	(n) ∈ Id}
Prop. 7.3= max{d ∈ N0 | d − 1 < min E−1	(n)} = min E−1	(n)

= dFq [t](n).

��

8 The field of definition of the roots of z A(n, T ) for some particular A and open
questions

The purpose of this section is twofold. First we report on some numerical computations of
the author with regards to the Newton polygons of ζA(−n, T ) for A different than the ones
considered above. These computations display some pattern. But we think it too premature,
due to the few computations made, to make any kind of conjecture. Second, for an elliptic
and a hyperelliptic A, we determine the fields of definition of the roots of small valuation of
ζA(−n, T ). For one A we obtain a complete answer, for the other this is done experimentally.
We conjecture that the experimentally observed behavior for small n holds for all n. If so,
this shows that there is now bound on the degree of ramification of the fields of definitions
of the roots of ζA(−n, T ) over Fq((π∞)). We think that with some combinatorial effort
the conjecture could be proven rigorously. This and the computation of further examples
is currently considered by Yujia Qiu, a PhD student of the author. We owe D. Thakur the
suggestion to investigate the fields of definition in the second part.

8.1 Experimental study of the break points of Newton plygons

Fix an arbitrary ring A as in Sect. 1, let X be the smooth projective geometrically irreducible
curve over Fq such that A = 	(X � {∞}, OX ) and consider for any n ∈ Zp the following
two sets:

NBn := {
x ∈ N0 | x is not the x-coordinate of a break point of the Newton polygon of ζA(−n, T )

}
,

WP :=
{

x ∈N | x is a Weierstrass gap at ∞, i.e., dim H0(X,OX (x∞))= H0(X,OX ((x−1)∞))
}
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For the rings A listed below, we have experimentally observed the following patterns for
all n ∈ N between 1 and 100 (note that for all these A we have q = p):

(a) For any n we have degT ζA(−n, T ) = dA(n) ∈ N0 � WP with dA(n) from from (2)

(b) The number of break points of the Newton polygon of ζA(−n, T )] is 
digq(n)

q−1 �.
(c) For any n we have NBn = WP ∩ [0, degT ζA(−n, T )].

Besides Fq [t] and the ring considered in the main part of this paper, the above holds for
the following rings A (the class numbers were computed using Magma, see [7]):

(i) The elliptic curves A = F2[x, y]/(y2 + y + x3), A = F3[x, y]/(y2 − x3 + x + 1),
A = F3[x, y]/(y2 − x3 − x2 + x), A = F3[x, y]/(y2 − x3 − x2 + 1) of genus g = 1
with Weierstrass gaps at 1 and class numbers 3, 4, 6 and 3, respectively.

(ii) The hyper-elliptic curves A = F2[x, y]/(y2 + y + x5 + x3 +1) and A = F3[x, y]/(y2 −
x5 − x3 − 1) of genus g = 2 with Weierstrass gaps at 1 and 3 and class numbers 1
and 10, respectively.

(iii) The curve A = F2[x, y]/(y3 + x4 + x + 1) of genus g = 3 with Weierstrass gaps at
1, 2 and 5 and class number 21.

(iv) The curve A = F3[x, y]/(y3 − y − x5 + x3 + 1) of genus g = 4 with Weierstrass gaps
at 1, 2, 4 and 7 and class number 28.

8.2 Experimental study of the field of definition of the roots of ζA for one A

We now consider the ring A′ = F2[x, y]/(y2 + y + x5 + x + 1) with p = q = 2. This ring
A′ is the affine coordinate ring of a hyperelliptic curve of genus 2 minus one rational point
∞. Its class number is 1. The ring A′ is listed in (ii) in the examples above. In particular,
experimentally the break points of any Newton polygon of any ζA′(−n, T ) occur at x =
2, 4, 5, 6, 7, 8, 9, . . .. Or in other words, the width of the projections of these Newton polygons
onto the x-axis seem to be 2, 2, 1, 1, 1, . . . , 1 where the number of constant slope segments
is dig2(n). For the degree we expect

degT ζA′(−n, T ) =
{

2, if dig2(n) = 1
2 + dig2(n), if dig2(n) ≥ 2.

By [21] we know that ζA′(−n, T ) = (1 + T )2 for dig2(n) = 1 and that (1 + T )2 divides
ζA′(−n, T ) for dig2(n) = 2. Computations suggest that for dig2(n) = 2 the polynomial
ζA′(−n, T )/(1+T )2, which is of degree 2 in T , has either roots in F∞ or its unique inseparable
extension of degree 2.

To describe what was experimentally observed2 for dig2(n) ≥ 3, write n as

n = 2i1 + 2i2 + · · · + 2i�

with i1 < i2 < · · · < i� and � = dig2(n). Then over F∞ the polynomial splits into 2
quadratic and �−2 linear isoclinic polynomials of pairwise different slopes. The experiments
also suggest that for � ≥ 3

• at least one of the quadratic factors is irreducible
• both factors are irreducible if and only if i2 + 2 ≤ i3

• the irreducible degree 2 factors are Artin-Schreier polynomials.

2 We thank Ralph Butenuth for writing Magma code that performed the factorization of precomputed special
values.
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The splitting fields of these Artin-Schreier extensions are ramified extensions of F∞. The
conductor of the more ramified field is

1 + 2i3−i1 + 2i2+1−i1 .

The conductor of the less ramified field, which exists precisely if i2 + 3 ≤ i3, is

1 + 2i3−i1−1 − 2i2+1−i1 .

In particular, the experimental results suggest that the splitting field of ζA′(−n, T ) over F∞
can have arbitrarily large degree, or in other words, that there cannot exist a finite extension
of F∞ which splits ζA′(n, T ) for all n ∈ Zp . We expect that the quadratic factors of small
slope for A′ = F2[x, y]/(y2 + y + x5 + x +1) can be analyzed completely by combinatorial
methods. This may however be quite involved.

Remark 8.1 The observations reported in the previous section suggest that for fixed n ∈ Zp

the splitting field of the entire power series T 	→ z A′(n, T ) is finite over F∞ and that the
degree is bounded independently of n. This agrees with the expectation of [13, Conj. 4]. How-
ever the experimental data also suggests that the conductors of these fields are unbounded,
so that the union of all these fields is unbounded. This is strikingly different from the situa-
tion in characteristic zero. If K is a finite extension of Qp , then the subfield of an algebraic
closure Qp generated by all extension of K , whose degree is at most a fixed bound, is a finite
extension of K . Thus for a continuous family of entire power series in characteristic zero
(say over K ), if the splitting field of each member of the family is of a uniformly bounded
degree over K , then there is a finite extension of K that contains all roots of all power series.
Going back to positive characteristic p, what can be said is the following: If all roots of all
z A(−n, T ) are of degree strictly less than p, then there exists a finite extension of F∞ that
contains all of them. If the degrees assume the value p, then this can fail. In particular one has
to be careful when comparing the characteristic zero with the characteristic p situation. We
owe this remark a question of Kevin Buzzard who considered questions of a similar flavor
in characteristic zero, on coefficient fields of modular forms in p-adic families.

We end this section with an explicit result on the splitting fields of the quadratic factors
of ζA(−n, T ) for A as in Sects. 2–6.

Proposition 8.2 Let A = F2[x, y]/(y2 + y + x3 + x + 1). Let n ∈ N have base 2 expansion

n = 2i1 + 2i2 + · · · + 2i�

with i1 < i2 < · · · < i� and � = dig2(n) and assume that � ≥ 2. Then the splitting field of
ζA(−n, T ) is F∞ if i3 ≥ i2 + 2 and it is F∞[ζ ]/(ζ 2 + ζ + 1) if i3 = i2 + 1.

Proof We define coefficients ãd,n ∈ A by ζA(−n, T ) =: ∑d=0,...,�+1 ãd,nT d . The coeffi-
cient ã1,n is zero and, by Theorem 1.3, for d ≥ 2 we have

v(̃ad,n) = 2i1 + (d − 1)2i1 + (d − 2)2i2 + · · · + 2id−1 − dn.

By the theory of the Newton polygon we can thus factor
∑

d=0,...,�+1

ãd,nT d =
(

1 + b1,nT + b2,nT 2
)( ∑

d=0,...,�−1

cd,nT d
)

where v(b2,n) = 2 · 2i1 − 2n, v(b1,n) ≥ 2i1 − n, and

v(cd,n) = d2i1 + d2i2 + (d − 1)2i3 + · · · + 2id+1 − dn.
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Recall that π∞ = x/y is a uniformizer at ∞. Substituting in the above product decomposition
for T the expression T · πn−2i1

∞ , all coefficients will come to lie in O∞ and moreover the
quadratic factor will have slope zero while all slopes of the other factors will be strictly

positive. We set a′
d,n := ãd,nπ

d(n−2i1 )∞ , b′
d,n := bd,nπ

d(n−2i1 )∞ and c′
d,n := cd,nπ

d(n−2i1 )∞ and

note that v(b′
1,n) ≥ 0, v(b′

2,n) = 0, v(c′
d,n) = d2i2 + (d − 1)2i3 + . . . + 2id+1 > 0. For

convenience of reference, we write down the composition in this renormalization also:
∑

d=0,...,�+1

a′
d,nT d =

(
1 + b′

1,nT + b′
2,nT 2

)( ∑

d=0,...,�−1

c′
d,nT d

)
. (15)

Comparing coefficients in the factorization modulo π
v(c2,n)
∞ = 2 · 2i2 + 2i3 shows that

b′
1,n ≡ c′

1,n (mod π2·2i2 +2i3
∞ ) and b′

1,n · b′
2,n ≡ a′

3,n (mod π2·2i2 +2i3
∞ ).

In particular this shows that v(b′
1,n) = v(c′

1,n) = 2i2 , so that the roots of the quadratic factor in

the b′
d,n satisfy an Artin-Schreier extension. Introducing S = T

b′
2,n

b′
1,n

gives the Artin-Schreier

equation

S2 + S = b′
2,n

(b′
1,n)2 .

To determine the splitting field of the latter Artin-Schreier equation, by Krasner’s lemma we

may replace the expression
b′

2,n

(b′
1,n)2 ∈ F∞ = Fq((π∞)) by the sum of its principal part together

with its constant coefficient. Thus it suffices to know the lowest 2i2+1 + 1 coefficients of the
Taylor series of b′

2,n in π∞ and, similarly, the lowest 2i2 +1 coefficients of b′
1,n . In particular,

due to their valuations, it suffices to know both, b′
2,n and b′

1,n modulo π2i2+1+1∞ only. From

here it is easy to deduce that one only needs to know a′
2,n and a′

3,n modulo π2i2+1+1∞ and

modulo π2i2+1+1∞ , respectively. Thus modulo π2i2+1+1∞ the formulae

b′
1,n = c′

1,n, b′
1,nb′

1,n + b′
2,n = a′

2,n, b′
1,nb′

2,n = a′
3,n

suffice to determine b′
2,n and b′

1,n to a sufficient precision. From these formulae one readily
deduces

b′
1,n = a′

3,n

a′
2,n

(
1 + O

(
π

2v(b′
1,n)

∞
))

In turn it follows that the splitting field of the equation for S, and hence for T , is the same as
that of

S2 + S = 1 + (a′
2,n)2

(a′
3,n)3 = 1 + ã2

2,n

ã3
3,n

, (16)

where the second equality follows from the homogeniety of degree 0 of the expression.
Because of the congruences among the coefficients of the z A(n, T ), it suffices to know

ã2
2,n

ã3
3,n

only for some n′ nearby n. Here ‘nearby’ depends on the precision needed for a′
3,n and

a′
3,n . We have

a′
2,n ≡ ã2,n′ (mod π2k−2·2i1

∞ ) and a′
3,n ≡ ã3,n′ (mod π2k−3·2i1

∞ )
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if n ≡ n′ (mod 2k). Our precision needed for a′
3,n and a′

3,n leads to the conditions

2k − 2 · 2i1 ≥ 2i2+1 + 1 and 2k − 3 · 2i1 ≥ 2i2+1 + 1,

i.e., we need 2k ≥ 2i2+1 + 3 · 2i1 + 1. This means that k = i2 + 2 is sufficient. This leads to
two cases:

Case i3 ≥ i2 + 2 : Then we may replace n by n′ = 2i1 + 2i2 without changing the
splitting field of (16). Then dig2(n

′) = 2 and ζA(−n′, T ) has degree 3. To compute this
polynomial, observe that A+,1 = ∅, A+,2 = {x, x +1} and A+,3 = {y, y +1, y + x, y +
x + 1} and we find

ζA(−n′, T )=1+(1 + xi1 +xi2)T 2 + (xi1 + xi2)T 3 =(1 + T )(1+T +(xi1 + xi2)T 2).

In this case, Eq. (16) becomes S2 + S = xi1 + xi2 whose roots

α := x2i1 + x2i1 +1 + · · · + x2i2 −1 and α + 1 lie in F∞.

Case i3 = i2 + 1 : Then we may replace n by n′ = 2i1 + 2i2 + 2i3 without changing the
splitting field of (16). We compute a′

d,n′ for d = 2, 3:

a′
2,n′ = 1 + x2i1 + x2i2 + x2i3 + x2i1 +2i2 + x2i1 +2i3 + x2i2 +2i3

,

a′
3,n′ = 1 + x2i1 + x2i2 + x2i3 + x2i1 +2i2 + x2i1 +2i3 + x2i2 +2i3 +

∑

1≤ j,k≤3
j �=k

y2i j
x2ik

.

The double sum on the right in the expression for a′
3,n′ is equal to

(y2i3 + y2i2
)(x2i1 + x2i2

) + (y2i1 + y2i2
)(x2i2 + x2i3

)

= (y2 + y)2i2
(x2i1 + x2i2

) + ((y2 + y)2i1 + (y2 + y)2i1+1 + · · ·
+(y2 + y)2i2 −1)(x2i2 + x2i3

)

= (x3 + x + 1)2i2
(x2i1 + x2i2

) + ((x3 + x + 1)2i1 + + · · ·
+(x3 + x + 1)2i2 −1)(x2i2 + x2i3

)

The term of a′
2,n′ of most negative valuation is x2i2 +2i3 . Krasner’s lemma requires us to

know the coefficients of x2i2 +2i3 −m for m = 0, . . . , (2i2 + 2)/2 – note that v(x) = −2.
The term of a′

3,n′ of most negative valuation is x3·2i2 +2i2 and this time we need to know

the coefficients of x4·2i2 −m for m = 0, . . . , (2i2+1 + 2)/2 = 2i2 + 1. Thus we may
approximate a′

2,n′ by x2i3
(x2i2 + x2i1 + 1) and a′

3,n′ by x3·2i2
(x2i2 + x2i2−1 + 2i1). Again

by Krasner’s lemma, it suffices to know
ã2

2,n

ã3
3,n

modulo π∞O∞ and a simple computation,

left to the reader shows now that

ã2
2,n

ã3
3,n

≡ 1 + x2i1 + x2i2 ≡ 1 +
i2−i1−1∑

m=0

(x2i1+m + x2i1+m+1
) (mod π∞O∞).

Hence if α is a root of (16), then α − ∑i2−i1−1
m=0 x2i1+m

is a root of S2 + S = 1, and the
claim of the proposition is thus proved. ��
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